BINDURA UNIVERSITY OF SCIENCE EDUCATION

ME JUN 2023 BACHELOR OF SCIENCE IN ELECTRONIC ENGINEERING

EEE2201: ENGINEERING MATHEMATICS

Time: 3 hours

Candidates may attempt ALL questions in Section A and TWO questions in Section B. Each question should start on a fresh page.

SECTION A (40 marks)

Candidates may attempt ALL questions being careful to number them 1 to

1. Use the standard expansions of functions to find the value of the following limit.

$$\lim_{x \to 0} \left[\frac{\cos 7x - 1}{x \sin x} \right]$$

5

$$z = 5xy - 6x^2 - y^2 + 7x - 2y$$

Investigate the critical points of z.

5

3. Find the solution for the following differential equations

(a)
$$(9x^2+4)\frac{dy}{dx} + 9xy = 1$$

5

(b)
$$x\frac{dy}{dx} + 5y = \frac{\ln x}{x}$$

5

(c)
$$\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = 12(x + e^x)$$

6

4. The complex number z satisfies the equation

$$4z + 3\overline{z} = \frac{1 - 18i}{2 - i}$$

where \overline{z} denotes the complex conjugate of z. Solve the equation, giving the answer in the form x + iy, where x and y are real numbers.

5. Explain the significance of the gradient in the context of engineering.

4

SECTION B (60 marks)

Answer any TWO questions

6. Consider the following hyperbolic equation, given in terms of k

$$2\cosh^2 x = 3\sinh x + k$$

- (a) Find the range of values of k for which the above equation has no real solutions.
- (b) Given further that k=1, find the exact logarithmic form the solutions of the above equation.
- (c) Explain divergence and its significance in the context of vector fields.

10

- 7. (a) State Green's theorem and explain its significance in engineering applications.
 - (b) Find the exact value of

$$\int_0^{\frac{\pi}{2}} \int_0^{4\cos z} \int_0^{\sqrt{16-y^2}} 3y \, dx \, dy \, dz$$

10

- (c) A curve is given parametrically by the equations $x = 2 \sinh t$, $y = \cosh^2 t$, $t \in \mathbb{R}$ Find a Cartesian equation of the curve, in the form y = f(x)
- 8. (a)

$$\mathbf{F} \equiv i + 2z\mathbf{j} + y\mathbf{k}$$

Evaluate the vector integral

$$\int_{V} \mathbf{F} dV$$

where V is the finite region enclosed by the cylinder with

$$x^2 + y^2 = 9, 0 \le z \le 2$$

(b) Evaluate the integral

$$\int_s (xy+z)dS$$

where ${\bf S}$ is the plane with Cartesian equation

$$2x - y + z = 3$$

whose projection onto the plane with equation z = 0 is the rectilinear triangle with vertices at (0,0), (1,0) and (1,1).