Bindura University of Science Education

Faculty of Science Education

Department of Science & Mathematics Education

Programmes: HBSc Ed (Mathematics)

Course: MT207: Analysis

Duration: 3 hours

Semester Examinations

Instructions to candidates

- (i) Answer all questions in Section A and two questions from Section B.
- (ii) Begin each question on a fresh page.

Section A [40 marks].

Answer all questions from this section being careful to number them A1 to A4.

A1. (a) Prove that a convergent sequence of real numbers has a unique limit.

[7]

(b). Find the least upper bound and greatest lower bound for the set.

$$A = \left\{ x \in \mathbb{R} \colon \frac{\sqrt{x+2}}{x}, \ x \ge 2 \right\}.$$

[4]

(c) Prove that the multiplicative inverse of a non-zero element of a field $\mathbb R$ is unique

[5]

A2. Let . Prove that $||x| - |y|| \le |x \pm y| \le |x| + |y|$ for any $x, y \in \mathbb{R}$.

[9]

A3. Prove that
$$\lim_{x\to -2} \frac{x^2-4}{x+2} = -4$$
.

[7]

 $\boldsymbol{A4.}(i)$ State the axiom of completeness .

[3]

(ii). Show that the function $f(x) = \sqrt{x+2}$ is differentiable.

[5]

Section B:[60 marks]

Answer two questions from this section being careful to number them B5 to B7.

B5.(a). Define the terms.

- (i). monotone sequence. [2]
- (ii). Cauchy sequence. [2]
- (b) A sequence (a_n) of real numbers is defined by $a_1 = 1$ and $a_{n+1} = \frac{2a_n + 7}{5}$.
 - (i). Prove that (a_n) is a bounded monotone increasing sequence. [7]
 - (ii). Hence, determine its limit. [3]
- (c). Prove that $f(t) = t^2$ is uniformly continuous on [2, 4].
 - (d). Prove that there exists a real number x such that $x^2=2$. [8]
 - **B6.** (a). Define a cut in \mathbb{R} .
 - (b). Prove that if an ordered pair (A, B) of non-empty subsets of \mathbb{R} form a cut in \mathbb{R} , then
 - there is a unique element ε that satisfies: $a \le \varepsilon$, $\forall a \in A$ and $\varepsilon \le \forall b \in B$. [15]
 - (c). State and prove the nested cells property in \mathbb{R} [12]
- **B7.** (a). State and prove the Mean Value Theorem [10]
 - (b). Define the following terms:
 - (i). a partition P of an interval [a, b], [3]
 - (ii). a lower and upper Riemann sum of a function f with respect to the partition P [4]
 - (c). Prove that $\int_0^1 t^2 dt$ is a Riemann integrable function [6]
 - (d). Show that $\sqrt{2} \sqrt{7}$ cannot be rational. [7]

END OF PAPER