BINDURA UNIVERSITY OF SCIENCE EDUCATION Mrs 3053

MT011: PURE MATHEMATICS 4

Time: 2 hours

Candidates may attempt ALL questions in Section A and at most TWO questions in Section B. Each question should start on a fresh page.

SECTION A (40 marks)

Candidates may attempt ALL questions being careful to number them A1 to A4.

- (a) If a = 3 + 4i and b = 12 5i, find the modulus and argument of $\frac{b}{a}$. A1. [4]
 - (b) Express the following complex number in trigonometric form: $-1 + \sqrt{3}i$. [4]
 - (c) Simplify $\frac{Cosot}{Cos2\theta isin2\theta}$ $Cos5\theta + isin5\theta$ [3]
 - (d) Show that (Z, *) is not a group where * is the operation defined by n*m = nm - n - m + 1.[5]
- A2. (a) Using a method based on De Moivre's Theorem, prove the identity that $Cos3\theta \equiv 4Cos^3\theta - 3Cos\theta.$

[6]

- (b) Prove by induction that $\sum_{r=1}^{n} r = \frac{n}{2}(n+1)$ for all positive integral values of n. [5]
- (c) State the three conditions that an equivalence relation satisfies. [3]
- A3. Use Cramers rule to solve:

$$x + y = 3$$

$$x - y = 3i. ag{5}$$

A4. Solve the differential equation $\frac{dy}{dx} = xy$ given that x = 0 and y = 1. [5]

SECTION B (60 marks)

Candidates may attempt TWO questions being careful to number them B5 to B7.

- **B5.** (a) Write out a group table for $Z_2 \times Z_2$. To which familiar group is it isomorphic? [10]
 - (b) Given that $Z_1 = 2 3i$ and $z_2 = -2 i$, find:

(i)
$$|z_1 - z_2|$$

(ii)
$$arg(z_1 + z_2)$$
 [4]

(c) If $z = \cos \theta + i \sin \theta$, show that

$$\sin^7 \theta = \frac{1}{64} \left(35 \sin \theta - 21 \sin 3\theta + 7 \sin 5\theta - \sin 7\theta \right).$$
 [7]

- (d) Show that $(P \to Q) \land (Q \to P)$ is NOT a tautology. [6]
- **B6.** (a) Prove by induction that $9^n 1$ is divisible by 8 for all positive integral values of n.
 - (b) Find the particular solution of the following differential equation:

$$(1 - x^2)\frac{dy}{dx} - xy + 1 = 0$$

given that
$$y = \frac{\pi}{2}$$
 when $x = 0$. [10]

(c) Solve the following second order differential equation,

$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = Cos2x,$$

given that
$$y = 1$$
 and $\frac{dy}{dx} = 0$ when $x = 0$ [11]

- **B7.** (a) Find the value of x for which $\begin{pmatrix} 2 & x \\ 5 & 3 \end{pmatrix}$ has no inverse. [3]
 - (b) For the matrices $A = \begin{pmatrix} 1 & 2 \\ 2 & 0 \\ -1 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & -1 & 2 \\ 2 & 1 & 0 \end{pmatrix}$, verify that $(AB)^t = B^t A^t$.

(c) Let
$$A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & -1 \\ 1 & 2 & 5 \end{pmatrix}$$
 find the adjoint of matrix A . [15]

(d) Hence or otherwise find A^{-1} , the inverse of matrix A. [6]

END OF QUESTION PAPER