

BINDURA UNIVERSITY OF SCIENCE EDUCATION

FACULTY OF SCIENCE EDUCATION

ENGINEERING AND PHYSICS DEPARTMENT

NS101: APPLIED BIOPHYSICS

TIME: 3 HOURS

INSTRUCTIONS

Answer **ALL of question one** in Section A and **any three** questions from Section B. Section A carries 40 Marks and each question in Section B carries 20 marks.

Physical constants

Stefan-Boltzmann constant, $\sigma = 5.67 \times 10^{-8} \text{Wm}^{-2} \text{K}^{-4}$ Planck's constant, $h = 6.626 \times 10^{-34} \text{ Js}$ Speed of light, $c = 3 \times 10^8 \text{ m s}^{-1}$

Note: Where no units are specified, assume they are S.I.

SECTION A

1.	(a)) . (i) Convert 77°F to °C	[2]
		(ii) Convert 40°C to °F	[2]
	(b)) How much heat is required to melt 50g of ice at 0 $^{ m 0}$ C, heat the re	esulting
		water from 0° C to 100° C and vaporise into steam at 100° C? (Spec	cific
		heat capacity of water = 4200Jkg ⁻¹ K ⁻¹ , latent heat of fusion of	
		ice = 3.34×10^5 Jkg ⁻¹ , latent heat of vaporization of water = 2.3×1	0 ⁶ Jkg ⁻¹ .)
			[6]
	(b)	Identify and describe the three types of radiation emitted by an unucleus.	nstable [6]
	(c)	Explain concisely what is meant by following terms: (i) Scalar quantity	[2]
		(ii) Accuracy of a measurement	[2]
		(iii) Precision of a set of measurements	[2]
		(iv) work	[2]
	(d)	State Newton's first law of motion	[2]

- (e) A man exerts a force of a 50 N on a heavy cart and pushes it 60 m in 100s. Calculate the power used in pushing the cart. [3]
- (f) The table below shows the properties of sub-atomic particles. Fill in the missing information.

PARTICLE	RELATIVE MASS	RELATIVE CHARGE	CHARGE (C)
Proton			$+1.6 \times 10^{-19}$
	1		
Electron		-1	

[5]

- (g) What is ultrasonic sound? State any two medical uses of ultrasound. [4]
- (h) Distinguish between temperature and internal energy.

[2]

SECTION B

2. (a) Define work, energy and power.

[6]

(b) State the principle of conservation of energy.

[2]

(c) Explain the difference between first, second and third class levers.

[6]

(d) A 60 N force moved an 8 kg object through a distance of 24 m in a 4 second interval. The frictional force opposing the motion was 36 N.

Calculate the work done by the 60 N force and the velocity of the object at the end of 4 seconds.

3. A nurse recorded the values shown in the table below for a patient's

temperature

Time	Decimal time	Temp (°C)	
10:00 AM	10.0	37.8	A112-11-11-11-11-11-11-11-11-11-11-11-11-
10:30 AM	10.5	38.0	
11:00 AM	11.0	38.3	
11:30 AM	11.5	38.5	
12:45 PM	12.75	39.2	

(a) Plot a graph of temperature versus time [6]					
(b) Find the patient's temperature at noon [4]					
(c) Calculate the slope (including error in slope) of the graph. [6]					
4. (a) Discuss three ways in which heat can be transferred between two points [6]					
(b) The skin temperature of a patient is 40°C and the temperature of the environment surrounding him is 23°C. If the total skin area is 2 m² and the radiation efficiency is 0.9, calculate the rate of loss of heat by the patient to the surroundings [8]					
(c) A medication at the bed-side of this patient states that it should be kep below a temperature of -35°C or -31°F. Determine whether the tw temperatures are the same. [6	vo				
5. (a) List the three main constituents of an atom. [3]]				
(b) Describe radiation treatment of cancer and explain what the term therapeutic ratio means.					
(c) Discuss two methods a nurse can use to detect radiation as she move around in the hospital. [7]					
(d) List any three ways a nurse can minimize radiation exposure in the hospital.					
6. (a) The voltage across a resistor in a purely resistive circuit is given by $V_R = 10 \sin 2\pi t$					
i. What is the peak voltage across the resistor? [1]]				
ii. What is the angular frequency of the ac voltage? [1]					
iii. Determine the period of the ac voltage. [2]]				
iv If the value of the resistance is 2 Ω , write the equation for the ac					
current. [2]				
(b) Outline the major differences in the penetrating power and ionizing ability of the three types of radiation emitted by an unstable nucleus. [8]					

- (c) A radioactive isotope used for an organ scan has a physical half-life of 8 days. Given that the biological half-life of the isotope is 3 days, calculate:
 - (i) The effective half-life
 - (ii) The remaining dosage after 12 days if the initial amount was 100 μ Cu. [3,3]

END OF PAPER