BINDURA UNIVERSITY OF SCIENCE EDUCATION BACHELOR OF SCIENCE EDUCATION DEGREE

PHYSICS PART 2 PH202 (2): QUANTUM PHYSICS 1 DURATION: 3 HOURS

 $e = 1.60 \times 10^{-19} C$

INSTRUCTIONS:

Answer <u>ALL</u> parts of Section A and any <u>THREE</u> questions from Section B. Section A carries 40 marks and Section B carries 60 marks.

Electron charge,

5 /		
Planck's constant,	$h = 6.63 \times 10^{-34} Js$	
Mass of an electron,	$m_e = 9.11 x 10^{-31} kg$	
Acceleration due to gravity,	$g = 9.81 ms^{-2}$	
Permittivity of free space,	$\varepsilon_0 = 8.85 \times 10^{-12} Fm^{-1}$	
Speed of light,	$c = 3 \times 10^8 \ ms^{-1}$	
Permeability of free space	$\mu_0 = 4\pi \times 10^{-7} T. m/A,$	
SECTION A		
1. (a)State the 3 postulates of quantum mechanics	[3]	
(b) What is the de Broglie wavelength of an electr	on whose mass is $0.51 \mathrm{MeV}/c^2$	
energy is 6.0eV?	[3]	
(c) Distinguish between		
(i)Boundstate and unbound state	[1]	
(ii) Potential step and Potential Barrier	[1]	
(iii)dispersive and non-dispersive medium in the	e movement of	
wave packets	[1]	

(d) Some ocean waves travel with a phase velocity $V_{phase} = \sqrt{g\lambda/2\pi}$, where g is
the acceleration due to gravity. Determine the group velocity of a	
"wave packet" of these waves?	[4]
(e) Using clearly labeled sketch diagrams compare the energy levels of	
infinite potential well, Harmonic oscillator and hydrogen atom	[6]
(f) What is the physical meaning of $\int_{-\infty}^{+\infty} \psi ^2 dx = 1$?	[2]
(g) Compute the wavelength of H_{eta} spectral lines (i.e. the second line of	f the
Balmer Series predicted by Bohr's model of atomic structure). The	$H_{oldsymbol{eta}}$ line
is emitted in the transition from n_i = 4 to n_f =2.	[4]
(h) The gold foil ($\rho=19.3 {\rm g/cm^3}$, M = $197 {\rm g/mole}$) hase a thickness of 2.0	0×10^{-4} cm.
It is used to scatter alpha particles of Kinetic energy $8.0 MeV$. What	fraction
of alpha particles is scattered at angles greater than 90°?	[4]
(i) The first excited state of an iron atom $^{53}_{\Box}Fe$ collapses to the ground emitting a photon of energy 14.4 KeV. If he life time of the excited	
Calculate the recoil energy of the atom	[4]
(k) An electron is moving along the x-axis with speed $2.05 \times 10^6 m/s$ wh	ich
can be known with precision at 0.50%. What is the minimum u	ncertainty with
which you can simultaneously measure the position of the electron	
axis?	[4]
(l) Briefly describe the process of quantum mechanical tunnelling	[3]

SECTION B

2. (a) Discuss the statement "x-ray emission is the inverse of photoelectric [2] effect." (b) The work function(\emptyset) for tungsten metal is 4.52 eV. Calculate [2] (i) cut-off wavelength λc for tungsten (ii) maximum kinetic energy of the electrons when radiation of wavelength [2] 198 nm is used. [2] (iii) Stopping potential in this case. (c) 1. With aid of an appropriate diagram derive the Compton shift equation $\Delta \lambda = \lambda' - \lambda = \frac{h}{m_e c} (1 - \cos \theta).$ [4] X-ray of wavelength 0.2400nm are compton Scattered and the scattered beam 2. is observed at an angle of 60° Relative to the incident beam. Find [3] (i) the wavelenght of the scattered Xrays [3] (ii) energy of the scattered photons [2] (iii) kinetic enery of the scattered electrons 3(a) Describe in words what is meant by normalization of the wave function [2] (b) A particle which is confined to move in one dimension between O and L is described by the wave function $\psi(x) = Ax(L-x)$ (i) Use the Normalisation condition to determine the constant A[4]

(ii) Derive an expression for the average value (expectation) of position	
Of the particle	[4]
(iii) Determine the expression for the average values of the kinetic energy	
of the partiete	[4]
(c) For a free particle show that the Schrodinger wave equation leads to the	
de Broglie relation $\lambda = \frac{h}{p}$	[6]
4 (a) (i) State the Correspondence principle	[2]
(ii) Show that the Bohr Model of the atom does indeed obey	
the Correspondence principle	[4]
(b) An electron is confined in a region of size of an atom (0.1nm). Calculate	
the minimum uncertainty in the momentum of the electron	[3]
(c) In a region of space a particle with mass m and zero energy has a	
time independent wave function $\psi(x)=Ae^{-x^2/L^2}$ where A and L	
are constants Determine the potential energy of the particle	[8]
4 (a) State three principles of quantum mechanics	[2]
(b) An electron is bound in one-dimensional infinite well of width 1×10^{-1}	⁰ m
Find the energy values in the ground state.	[3]
(c) A free particle has initial wave function	
$\psi(x,0) = A \exp - ax^2$	
where A and a are positive real constants.	
(i) Normalize $\psi(x,0)$.	[3]
(ii) Determine $\psi(x,t)$.	[3]

(iii) Find $ \psi(x,t) ^2$. Express your answer in terms of the quantity	
$w = \frac{a}{1 + \left(\frac{2\hbar at}{m}\right)^2}$	[3]
(iv) Determine $\langle x^2 \rangle$	[6]
5(a) Write Schrödinger's equation for a free particle	[2]
(b) (i) Show that the wave function $\psi(x) = Ae^{ikx}$ represents a state for which	ch
momentum of the particle has the value $P = \hbar k$	[5]
(ii) Find the kinetic energy of the particle in this state	[5]
(c) A spring mass system has a mass equal to 0.10 kg and a spring	
constant equal to 10 N/m. The system oscillates with amplitude of 0.	10 m.
(i) If the energy of the oscillator is quantized what is the quantum numb	oer n
associated with this energy?	[3]
(ii) If the quantum number n changes by unity, what is the fractional cha	ange
in energy?	[3]
(iii) What conclusion do you draw from (ii)?	[2]
6. (a) A particle in the infinite square well has the initial wave function	
$\Psi(x, 0) = \begin{cases} Ax, & 0 \le x \le a/2, \\ A(a-x), & a/2 \le x \le a. \end{cases}$	
(i) Sketch $\Psi(x,t)$	[3]
(ii) Determine the constant A	[4]

(iii) Find $\Psi(x,t)$.

[4]

(b) Like the classical wave equation the Schrödinger equation is linear.

Why is this important?

[2]

(c) A particle of mass m has the wave function

$$\Psi(x,t) = Ae^{-a\left[\left(mx^2/\hbar\right) + it\right]}$$

where A and a are positive real constants.

(i) Find A

[3]

(ii) For what potential energy function, V(x) is this a solution to the

Schrödinger equation?

[4]

END OF EXAM