BINDURA UNIVERSITY OF SCIENCE EDUCATION

PHYSICS AND ENGINEERING DEPARTMENT

PH203: CIRCUIT ANALYSIS

TIME: 3 HOURS

INSTRUCTIONS

Answer question one in Section A and any three questions from Section B. Section A carries 40 marks and each question in Section B carries 20 marks.

SECTION A

- 1 (a) Convert the following from polar to rectangular form: $C = 10 \angle 45^{\circ}$. [6]
 - (b) Determine the sum of $C_1 = 3 + j 6$ and $C_2 = -6 + j 3$. [4]
 - (c) Find the product of C_1 and C_2 if $C_1 = -2 j 3$ and $C_2 = 4 j 6$. [6]
 - (d) Given that $C_1 = 2 \angle -40^\circ$ and $C_2 = 7 \angle 120^\circ$, calculate the product of C_1 and C_2 . [6]
 - (e) Transform the following sinusoid in time domain to phasor domain: $v = -4\sin(30t + 50^{\circ}) \text{ V}$. [5]
 - (f) Convert the sinusoid corresponding to the following phasor to time domain: I = 12 + j = 5 A. [5]
 - (g) The instantaneous current of an ac sinusoidal current is given by $I=I_m cos\omega t$. Show that $I_{rms}=\frac{I_m}{\sqrt{2}}$. [8]

SECTION B

For the network shown in Fig. 2.1, find the equivalent resistance *Rab* and the current *i* using the Wye-Delta transformation. [20]

Fig. 2.1

[16]

3 (a) Find the current through R_L in the circuit of Fig. 3.1 using Norton's Theorem.

Fig. 3.1

(b) Calculate the amount of heat energy dissipated in the resistor R_L in part (a) over a time interval of 1 hour [4]

Page 2 of 4

4 (a) Solve the circuit in Fig. 4.1 to find the current through 15 Ω using Theorem. [16]

Fig. 4.1

(b) Calculate the potential difference across and the power dissipated in the 15 Ω resistor in part (a).

[4]

Two current sources are connected to a resistor, capacitor and an inductor as shown in Fig. 5.1.

Fig. 5.1

Calculate the node voltage V_1 and V_2 expressing your answers in phasor form.

[20]

A current waveform is described by the function: $i(t) = \begin{cases} 5t, & 0 < t < 2 \\ -10, & 2 < t < 4 \end{cases}$ as shown in Fig. 6.1.

The current is passed through a $2-\Omega$ resistor.

(a) Find the rms value of the current.

[18]

(b) Calculate the average power absorbed by the resistor.

[2]