BINDURA UNIVERSITY OF SCIENCE EDUCATION **FACULTY OF SCIENCE AND ENGINEERING**

DEPARTMENT: SPORTS SCIENCE

MASTER OF SCIENCE DEGREE IN SPORTS SCIENCE

SS 502: PHYSIOLOGY AND BIOCHEMISTRY OF PHYSICAL ACTIVITY

DURATION: 3 HOURS

TOTAL MARKS: 100

INSTRUCTIONS TO CANDIDATES

Section A is compulsory.

Answer three questions from Section B.

Exam 2

Section A

1. Compute total work and power output per minute for 10 minutes of treadmill exercise, given the following:

Treadmill grade = 15%

Horizontal speed = 90 m*min

Subject's weight = 70 kg

Section B.

2. Calculate net efficiency, given the following:

20 Marks

Resting VO2 = 0.3 L*min

Exercise VO2 = 2.1 L*min

Resistance against the cycle flywheel = 2kg

Cranking speed = 50 rpm

Distance travelled per revolution = 6 metres.

- 3. Define preload, afterload, and contractility, and discuss the role of each in the increase in the maximal 20 Marks stroke volume that occurs with endurance training.
- 4. Explain how endurance training improves acid-base balance during exercise.

20 Marks

- 5. Give examples and explain six sports that use each energy system as their primary source of energy 20 Marks (two sports for each energy system).
- (a) The high-energy phosphate system
- (b) The anaerobic glycolytic system
- (c) The aerobic oxidative system
- 6. A 1500-meter runner is experiencing a drop in performance at the last lap of the race. From a 20 Marks biochemical point of view explain, where you would direct the training.

END OF PAPER

Page 1 of 1