Bindura University of Science Education

Faculty of Science Education

Department of Science and Mathematics Education

Programme: Diploma in Science Education (Mathematics & Geography)

Course: DM008: Numerical Methods Duration: Three hours

Semester Examinations

Instructions to candidates

JUN 2024

- (i) Answer all questions in Section A and two questions from Section B.
- (ii) Begin each question on a fresh page.

Section A [40 marks].

Answer all questions from this section being careful to number them A1 to A4.

- A1. (a) Expand ln(2-x) each of the following functions as a series of ascending powers of x up to and including the term in x^4 . [5]
- (b). (i) Show graphically that the equation $18lnx + x^2 = 0$ has only one real root. [3]
- (ii) Verify that this root lies between 0.5 and 1. [2]
- A2. (a) Show that the equation $x^3 5x = 3$ has root between 2 and 3. [3]
- (b). Use linear interpolation once to find an approximation to this root to 3 decimal places.[7]
- A3. (a). Establish that the equation $e^x = 20 \sin x$ has a root, $\alpha \in (2,3)$. [3]
- (b). Given that the root, α , to the equation $e^x = 20 sinx$ is close to 2.3, use Newton-Raphson method once to find an approximation to α correct to 3 decimal places. [7]
- **A4.** By substituting 0.08 for x in $(1+x)^{\frac{1}{2}}$ and its expansion find $\sqrt{3}$ to 4 significant figures.

[10]

Section B:[60 marks]

Answer two questions from this section being careful to number them B5 to B7.

B5. (a) Express $3\cos x \sin x$ as a series of ascending powers of x up to and including the term in x^4 .

(b) The variables x and y are related by the law: $ay = b^x$. The following table gives the set of values for x and y.

х	5	6	7	8
у	1.07	2.13	4.27	8.53

(i). Express this relationship in linear form.

- [4]
- (ii). Hence, by drawing a straight line graph find approximate values of a and b.
- [6]
- (c). Use the expansion of $ln\left(\frac{1+x}{1-x}\right)$, with $x=\frac{1}{3}$ to find ln2 correct to 3 decimal places.
 - [8]
- (d). Given that $\theta = \frac{3\pi}{8}$ radians is an approximation for the root of the equation $\theta = tan\theta \theta$, use the Newton-Raphson Method to obtain a second approximation giving your answer correct to 3 decimal places. [6]

B6 (a) (i) Use Simpson's rule with 7 ordinates to find an estimate for the value of $\int_0^{0.6} xe^x dx$.

[7]

(ii) Find by analytic means the exact value of $\int_0^{0.6} xe^x dx$.

- [5]
- (iii) Hence, determine the absolute error that resulted from use of Simpson's rule. [4]
- (b) If x is small enough that terms involving x^5 and higher powers of x can be ignored, use the Binomial Theorem to show that $\frac{1}{\sqrt{1+x^2}} = 1 \frac{1}{2}x + \frac{3}{8}x^4$. [6]

Hence, show that the approximate value of the integral $\int_0^{0.1} \frac{1}{\sqrt{1+x^2}} dx = 0.0998$. [8]

- **B7** (a). If x_1 is the first approximation of the root of the equation f(x) = 0 and x_2 is the second approximation of the root:
 - (i) State the algebraic connection between x_1 and x_2 .

[2]

(ii) Hence, show that x₂ = x₁ - f(x₁)/f'(x₁). [4]
(iii) Apply the Newton-Raphson method to find the root of the equation x + 4/x² - 1 = 0, with x₀ = -1, giving your answer to 3 significant figures. [7]
(b) (i) Show that if x is a fixed point of the iteration, x_{n+1} = √3x_n + 2, then x satisfies the equation: x² - 3x - 2 = 0. [2]
(ii) Perform 4 iterations of for x_{n+1} = √3x_n + 2, using x₀ = 1 to obtain x₄. [4]
(c). (i) Use linear interpolation to find the root of the equation e^x = 3x + 1 to 3 decimal places. [5]
(ii) It is known that x and y are related by the law ae^y = x² - bx. Explain how you would

END OF PAPER

reduce the relation to the form Y = mX + c.

[6]