BINDURA UNIVERSITY OF SCIENCE EDUCATION

SFM111/AMT101/ MT101: CALCULUS 1 CALCULUS AND FINANCIAL MODELING

Time: 3 hours

Answer ALL questions in Section A and at most TWO questions in section B.

SECTION A (40 marks)

Candidates may attempt ALL questions being careful to number them A1 to A4.

- A1. (a) Find all critical points for $f(x) = x^3 3x^2 + 1$. [7]
 - (b) Find all the local maximum and minimum points for $f(x) = \frac{1}{2} + \sin(x)$ on $[0, \pi]$.
- **A2.** Sole the following inequalities, $|5x 8| \le 12$. [4]
- A3. (a) State the εN definition of the limit of a sequence. [2]
 - (b) Prove that $\lim_{n\to\infty} \left(\frac{n-1}{n+1}\right) = 1.$ [5]
- **A4.** Find the derivative of $sin^{-1}(x)$. [5]
- A5. (a) Show that the function f(x) = 5x 1 is bijective. [6]
 - (b) Find the inverse of f(x) = 5x 1. [4]

SECTION B (60 marks)

Candidates may attempt TWO questions being careful to number them B5 to B7.

B6. (a) Evaluate the following limits.

(i)
$$\lim_{x\to\infty} \left[x^4 \sin^4\left(\frac{1}{x}\right)\right]$$
. [5]

- (ii) $\lim_{x\to 0} [x^2 \sin(\frac{1}{x})].$ [5]
- (b) Find the indefinite integral of $\int \frac{x^3+2}{x^3-x} dx$. [8]
- (c) Use the ϵN definition of the limit of a sequence to show that a sequence whose n^{th} term given by $a_n = (3 \frac{1}{7n^2})$ converges to 3. [6]

	(d) Show that the sequence $U_n = \frac{2n-7}{3n+2}$ is monotonic increasing.	[6]
B7	 (a) When do we say a sequence S_n is convergent. (b) Determine whether the sequence S_n = (-1)ⁿ⁺¹(n²)/n² + 1, where n = 1, 2, 3 converges. (c) Find Df and Rf if f(x) = 1/√(3-x). (d) Let f(x) = x²sin(1/x), x ≠ 0. 	[2] verges [4] [4]
Approximately and the second s	 (i) Does f(x) have a derivative at x = 0? Justify your answer. (ii) Is f(x) differentiable at x = 0, justify your answer. (e) Find the dimensions of an isosceles triangle of largest area that can be inscria circle of radius a units. 	[5] [5] bed in [10]
B8.	 (a) State the Mean Value Theorem of differentiation. (b) Verify the Mean Value Theorem for f(x) = x² where a = 0 and b = 1. (c) State the second fundamental theorem of calculus. (d) Find the area of the region bounded by f(x) = 4 - 4x² and g(x) = 1 - x². (e) Give a detailed sketch of the graph of y = x³/3x - 2. 	[3] [7] [2] [8] [10]
and the second s		