BINDURA UNIVERSITY OF SCIENCE EDUCATION ## SFM111/AMT101/ MT101: CALCULUS 1 CALCULUS AND FINANCIAL MODELING Time: 3 hours Answer ALL questions in Section A and at most TWO questions in section B. ## SECTION A (40 marks) Candidates may attempt ALL questions being careful to number them A1 to A4. - A1. (a) Find all critical points for $f(x) = x^3 3x^2 + 1$. [7] - (b) Find all the local maximum and minimum points for $f(x) = \frac{1}{2} + \sin(x)$ on $[0, \pi]$. - **A2.** Sole the following inequalities, $|5x 8| \le 12$. [4] - A3. (a) State the εN definition of the limit of a sequence. [2] - (b) Prove that $\lim_{n\to\infty} \left(\frac{n-1}{n+1}\right) = 1.$ [5] - **A4.** Find the derivative of $sin^{-1}(x)$. [5] - A5. (a) Show that the function f(x) = 5x 1 is bijective. [6] - (b) Find the inverse of f(x) = 5x 1. [4] ## SECTION B (60 marks) Candidates may attempt TWO questions being careful to number them B5 to B7. B6. (a) Evaluate the following limits. (i) $$\lim_{x\to\infty} \left[x^4 \sin^4\left(\frac{1}{x}\right)\right]$$. [5] - (ii) $\lim_{x\to 0} [x^2 \sin(\frac{1}{x})].$ [5] - (b) Find the indefinite integral of $\int \frac{x^3+2}{x^3-x} dx$. [8] - (c) Use the ϵN definition of the limit of a sequence to show that a sequence whose n^{th} term given by $a_n = (3 \frac{1}{7n^2})$ converges to 3. [6] | | (d) Show that the sequence $U_n = \frac{2n-7}{3n+2}$ is monotonic increasing. | [6] | |--|--|----------------------------------| | B7 | (a) When do we say a sequence S_n is convergent. (b) Determine whether the sequence S_n = (-1)ⁿ⁺¹(n²)/n² + 1, where n = 1, 2, 3 converges. (c) Find Df and Rf if f(x) = 1/√(3-x). (d) Let f(x) = x²sin(1/x), x ≠ 0. | [2]
verges
[4]
[4] | | Approximately and the second s | (i) Does f(x) have a derivative at x = 0? Justify your answer. (ii) Is f(x) differentiable at x = 0, justify your answer. (e) Find the dimensions of an isosceles triangle of largest area that can be inscria circle of radius a units. | [5]
[5]
bed in
[10] | | B8. | (a) State the Mean Value Theorem of differentiation. (b) Verify the Mean Value Theorem for f(x) = x² where a = 0 and b = 1. (c) State the second fundamental theorem of calculus. (d) Find the area of the region bounded by f(x) = 4 - 4x² and g(x) = 1 - x². (e) Give a detailed sketch of the graph of y = x³/3x - 2. | [3]
[7]
[2]
[8]
[10] | | and the second s | | |