BINDURA UNIVERSITY OF SCIENCE EDUCATION

DIPLOMA IN SCIENCE EDUCATION

ENGINEERING AND PHYSICS DEPARTMENT

DP002 (2): ELECTRICITY AND MAGNETISM

TIME: 3 HOURS

INSTRUCTIONS

MAR 202

Answer **question one** in Section A and **any three** questions from Section B. Section A carries 40 marks and each question in Section B carries 20 marks.

Physical constants

Electronic charge, $e = 1.6 \times 10^{-19} \text{ C}$ Boltzmann's constant, $k = 1.38 \times 10^{-23} \text{ JK}^{-1}$ Mass of an electron, $m_e = 9.11 \times 10^{-31} \text{kg}$ Permittivity of free space, $\epsilon_o = 8.85 \times 10^{-12} \text{ C}^2 \text{N}^{-1} \text{m}^{-2}$ Velocity of light in vacuum, $c = 3.00 \times 10^8 \text{ ms}^{-1}$ Acceleration due to gravity, $g = 9.81 \text{ ms}^{-2}$

SECTION A.

- 1 (a)
- (i). Explain in terms of electron movement what happens when a polythene rod becomes charged negatively by being rubbed with a cloth. [3]
- (ii). One method of painting a car uses electrostatics. A paint spray produces paint droplets all of which are given a positive charge. The car body is given a negative charge.
 - 1. Explain why it is important to give all the paint droplets a positive charge.[2]
 - 2. Explain why it is important to give a car body a negative charge. [2]
- (b). Calculate the current in each of the following,
 - (i).2C flows through a bulb in 10s [3]
 - (ii).2 μc flows through a light –emitting diode in 1ms. [3]
- (c). What length of constantan wire of diameter 0.4mm has a resistance of 10Ω ? Assume the resistivity of constantan is $5x10^{-7} \Omega$ m. [6]
- (d). A 3 μF capacitor is connected in series with a 6 μF capacitor. The combination is then connected in parallel with a 1 μF capacitor to a 12V battery.
- (i). Draw a circuit diagram to represent this information. [2]

(ii). Calculate the charge stored by each capacitor.

[6]

(e)(i). State Ohm's law.

[2]

- (ii).Use Kirchhoff's laws to derive formulae for combined resistances in series and in parallel. [6]
- (f) State Faraday's law and Lenz's law of electromagnetic induction.

[5]

SECTION B

2. Table 1 is a selection of the specifications to be found in a manufacturer's catalogue of wires for use in electrical circuits.

Table 1

	Substance	Wire diameter / mm	Resistance per unit length / Ωm	Resistivity / Ωm
(i)	Copper	0.9		1.7×10^{-8}
(ii)	Copper		0.55	1.7 × 10 ⁻⁸
iii)	Manganin	0.45	2.6	
iv)	Constantan	0.45	3.1	
(v)	Constantan	0.2		47 × 10 ⁻⁸
(vi)	Nichrome	0.45	7.0	

Redraw the table and carry out necessary calculations to complete it.

[20]

3.(a) Calculate the charge on and the potential difference across each of the capacitors shown in **Figure 1**. [6]

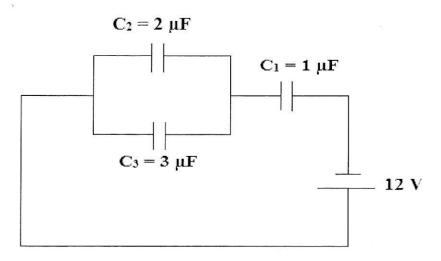


Figure 1

(b) A 10 μ F capacitor is connected across the terminals of a 100 V d.c. power supply and allowed to charge fully. Calculate

(i)	the charge on the capacitor,	[2]
(ii)	the energy stored by the capacitor.	[2]

(c).A straight wire of length 50 cm and resistance 10 Ω moves sideways with velocity 15ms⁻¹ at right angles to a uniform magnetic field of flux density 2.0 x 10⁻³ Tesla. Calculate the amount of current that would flow if its ends were connected by leads of negligible resistance.

(d). Draw a sketch graph to show the variation of the electric field intensity with distance x.[4]

- 4. (a). State Coulomb's law of electrostatics defining all the symbols in the Equation. [4]
 - (b) Three charges A, B and C of magnitudes 5 nC, 3 nC and 2 nC respectively are arranged at the corners of a square in vacuum as shown in **Figure 2**.

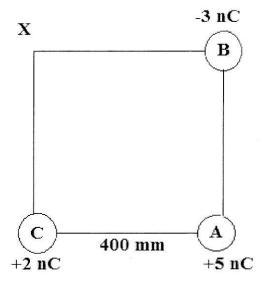


Figure 2

Calculate

- (i) the electric potential at X due to the three charges. [6]
- (ii) the electric field strength and its direction at X due to the three charges. [10]
- 5. Figure 3.1 shows the magnetic field between the two pole pieces of a large *U*-shaped magnet, with the north pole vertically above the south pole. When the strength of the magnetic field is measured along the line *AB* using a search coil, it is found to vary as shown in Figure 3.2.

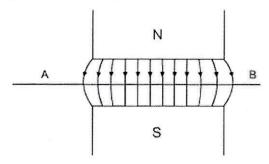


Figure 3.1

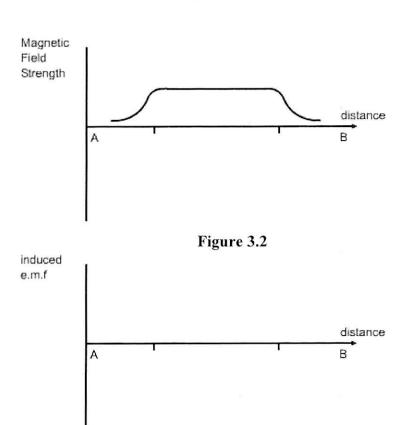


Figure 3.3

- (a) Describe in words how the magnetic flux linkage in the coil changes as the coil moves from A to B. [6]
- (b) State Faraday's and Lenz's law of electromagnetic induction. Why is Lenz's law, a law of conservation of energy? [4]
- (c) .Redraw, Figure 3.3 and on it plot a graph to show how the e.m.f. induced in the coil varies as the coil moves from A to B. [10]
- 6.(a) Define the following and state their units
 - (i) magnetic flux.

[3]

(ii) magnetic flux density.

[3]

- (b). A long vertical straight wire carries current in an upward direction. Draw a diagram to show the direction of the magnetic field around the wire. [2]
- (c). An aeroplane with a wing span of 25 m is flying from East to West at a speed of 250 ms

- (i). Calculate the potential difference between the wing tips if the vertical component of the earth's magnetic field is 4.0×10^{-5} T. [4]
 - (ii). Which wing tip is at a positive potential? [1]
- (c). Deduce the relation between the *electric field strength* E at the surface of a conductor, the *charge density* σ and the *permittivity* ε . [6]

END OF PAPER