BINDURA UNIVERSITY OF SCIENCE EDUCATION FACULTY OF SCIENCE AND ENGINEERING DEPARTMENT COMPUTER SCIENCE BSc HONS DEGREE IN COMPUTER SCIENCE DEGREE/INFORMATION TECHNOLOGY

COURSE CODE CS113/NWE114/SWE203: COMPUTER ARCHITECTURE

DURATION: 2 HOURS 30 MINUTES

TOTAL MARKS: 100

INSTRUCTIONS TO CANDIDATES

This paper contains five questions Answer all questions.

MAR 2024

Question 1

- a) John von Neumann is highly regarded as one of the leaders of Computer Science, and his IAS machine is architecturally similar to modern computers. Illustrate by means of a diagram the basic schematic of the Von Neumann machine and explain the properties of a Von Neumann machine.
- b) You are employed as a consultant to select a suitable high-performance computer for use by a small online video rental company. You make your selection and copy out the candidate computer's parameters (specifications) for your client. Because your client is non-technical, you have to explain the relevance of some of the parameters. For the following specifications figure 1 below, write a paragraph that indicates the meaning, relevance, and importance of the specified parameter. Your report should also explain why this specification corresponds to a high performance computer.

Workstation specifications:

- Processor:
 - o CPU cores: 8
 - o CPU threads: 16
- Memory: 64 GB, DDR4
- CPU clock: 4.7 GHz
- Storage device:
 - o 2 TB SSD
 - 10 TB HDD
- Cache memory: 64 MB

Figure 1: Computer Specifications

Question 2

Let us consider a computer executing the following mix of instructions in table 1:

Instrcution	Frequency	Clock cycles		
ALU	50	1		
LOAD	.20	4		
STORE	10	-4.		
BRANCH	10	2		
JUMP	10	2		

Table 1: Instruction cycles

- a) How much is the CPI average assuming a clock period of 5 ns? [4]b) How much is the throughput expressed in MIPS, in the case (a)? [6]
- c) Let us assume that, given some optimization techniques, the clock frequency has been incremented by 25% and this implies a CPI increment of ALU instructions of 50% and LOAD instructions of 25% while the remaining instructions are executed with the same CPI. How much is CPI average?

[6]

d) How much is the Throughput expressed in MIPS, in the case.

Question 3

- a) What is the basic idea of associative mapping for cache organization? [4]
- b) Explain one advantage and one disadvantage of the associative mapping organization?
- c) It is often useful to characterize cache misses according to their cause. Identify the three commonly-used categories of cache miss, and for each case explain the cause.

[6]

- d) Explain the effect if (if any), on each of the three categories of cache miss, when each of the following cache parameters is either increased or decreased.
 - i) cache capacity.
 - ii) cache block size.
 - iii) cache associativity.

[6]

Question 4

a) Using is the following instruction sequence in Fig 2. Illustrate what is meant by fetching of wrong operands in pipelining. [2]

```
lw $t1, 0($t2)
sub $t3, $t2, $t1
sw $t4, 0($t3)
add $t3, $t1, $t1
sub $t1, $t1, $t2
sra $t3, $t2, 12
xor $t5, $t1, $t2
```

Fig 2: instruction sequence

- b) Draw a space-time graph showing the progression of the instructions through this pipeline.
- c) Modify the program above to show how NOPs can be inserted to prevent the fetching of wrong operands. [6]

Question 5

Figure 3 shows a sample MIPS program output of a 10x10 multiplication table

1	2	3	4	5	6°	7	8	9	10
2	4	6	8	10	12	14	16	18	20
3	6	9	12	1 5	18	21	24	27	30
4	8	12	16	20	24	28	32	36	40
5	10	15	20	25	30	35	40	45	50
6	12	18	24	30	36	42	48	54	60
7	14	21	28	3 5	42	49	56	63	70
8	16	24	32	40	48	56	64	72	80
9	18	27	3 6	45	54	63	72	81	90
10	20	30	4 0	50	60	70	80	90	100

Figure 3: sample MIPS program output

Write a MIPS assembly program which produces an n*m multiplication table with the same spacing as in figure 3, where n and m are specified by the user. [20]

END OF PAPER