BINDURA UNIVERSITY OF SCIENCE EDUCATION

HONOURS DEGREE IN SCIENCE EDUCATION (HBScED)

- AUG 2024

MT303: Probability Theory and Statistics

Time: 3 hours

Candidates may attempts ALL questions in Section A and at most TWO questions in Section B. Each question should start on fresh page.

SECTION A (40 marks)

Candidate may attempt ALL questions being careful to number them A1 to A5

A1. (a) Define Singleton

[2]

(b) Let X and Y be events and let $X \subset Y$. Show that P(X) < P(Y).

[4]

- A2. Suppose A and B are independent events, prove that
 - (a) A' and B' are independent

[3]

(b) P(A'|B) = P(A').

[3]

A3. (a) How many different permutations of the letters of the word MATHEMATICS are possible?

[3]

- (b) State the two properties of the legitimacy of a probability mass function, p(x).
- (c) State the Uniqueness Theorem of the moment generating theorem.

[2] [3]

A4. Let X have the probability density function is given by:

$$f(x) = 2^{-|x-1|-1}$$

for x = 0, 1, 2

(a) Determine the probability distribution of X in tabular form. [3

(b) Find E(X) and Var(X).

[4]

(c) Find the cumulative distribution function of X.

[3]

A5. (i) Prove the property of memoryless of the exponential random variable.

[5]

(ii) If EX(X-1)=4 for an exponential random variable X, find the value of λ .

SECTION B (60 Marks)

Candidates may attempt TWO questions being careful to number them B6 to B8.

B6. (a) Let X have the probability density function is given by:

$$f_X(x) = \begin{cases} 2x & 0 \le x \le b \\ 0 & otherwise \end{cases}$$

(i) Sketch the graph of $f_X(x)$.

[3]

(ii) Find and sketch the cumulative frequency of X.

[5]

(iii) Hence, find $P(0 < X < \frac{1}{2})$. [4]

(b) Let X be a random variable with probability mass function given by:

$$p(x) = \begin{cases} \theta(1-\theta)^{x-1} & if \ x = 1, 2, 3, \dots \\ 0 & otherwise \end{cases}$$

By differentiating with respect to θ both sides of the equation

$$\sum_{x=1}^{\infty} \theta (1-\theta)^{x-1} = 1$$

Show that the mean of the geometric distribution is given by $\frac{1}{\theta}$. [6] (c) State and prove Bayes theorem. [12]

B7. (a) State and prove the Chebyshev's inequality.

[12]

(b) If $X \sim B(n, p)$

(i) Find the moment generating function of X.

4

(ii) Hence find E(X) and Var(X).

[4, 4]

(c) State and prove the Law of total probability

[6]

B8. (a) Let X be a continuous random variable with parameter λ and probability density function given by:

$$f_X(x) = \lambda e^{-\lambda x}, \qquad x > 0. \ \lambda > 0$$

Show that for any positive number s and t, P(X > s + t | X > s) = P(X > t). [10]

(b) Show that the moment generating function of the normal distribution is given by:

$$M_X(t) = e^{\mu t + \frac{1}{2}\sigma^2 t^2}.$$
 [5]

(c) Let $\psi = (-\infty; \infty)$ be the universal set. Use De Morgan's rule to find $([0,3][1,5])^c$. [5] (d) State and prove the Bayes' theorem. [10]

END OF THE PAPER