BINDURA UNIVERSITY OF SCIENCE EDUCATION

CHEMISTRY DEPARTMENT

CH104: ANALYTICAL CHEMISTRY I

AUG 2023

TIME: 2 HRS

ANSWER QUESTION1 AND FOUR OTHER QUESTIONS. TWO FROM EACH OF SECTIONS A AND B. EACH QUESTION CARRIES 20 MAQRKS.

- 1 (a) Normal alkanes are hydrocarbons with the formula C_nH_{2n+2}. Plants selectively synthesize alkanes with an odd number of carbon atoms. The concentrations of C₂₉H₆₀ in summer rainwater collected in Hannover, Germany, is 34 ppb. Calculate the molarity of C₂₉H₆₀ and express the answer in nM. [5 marks]
 - (b) Consider the five results 12.53, 12.56, 12.47, 12.67, and 12.48. Is 12. 67 a bad result? [5 marks]
 - (c) The carbohydrate content of glycoprotein with sugars attached to it is determined to be 12.6, 11.9, 13.0, 12.7, and 12.5 g of carbohydrate per 100 g of protein in replicate analyses. Find the 90% confidence intervals for the carbohydrate content. [6 marks]
 - (d) Differentiate between a galvanic cell and an electrolytic cell.

[4 marks]

SECTION A: ANSWER TWO QUESTIONS

2. (a) Describe the method of standard addition.

[5 marks]

- (b) An unknown sample of Ni²⁺ gave a current of 2.36 μA in an electrochemical analysis. When 0.500 mL of solution containing 0.0287 M Ni²⁺ was added in 25.0 mL of unknown, the current increased to 3.79 μA.
 - (i) Denoting the initial, unknown concentration as [Ni²⁺]_i, write an expression for the final concentration, [Ni²⁺]_f, after addition of 25.0

mL of unknown was mixed with 0.500 mL of standard. Use the dilution factor for this calculation. [3 marks

- In a similar manner, write an expression for the final concentration (ii) of added standard Ni2+, denoted as [S]f. [3 marks]
- Calculate [Ni2+]; in the unknown. [5 marks] (iii)
- Describe internal standards as a calibration method in quantitative (c) [4 marks' chemical analysis.
- Applying von Weimarn's theory of relative supersaturation, discuss the 3. (a) measures that can be taken to decrease relative supersaturation during a [10 marks] precipitation.
 - What effect has the addition of 0.1 mol of anhydrous sodium acetate to 1 L (b) of 0.1 M acetic acid upon the degree of dissociation of the acid?

[10 marks]

- Write the mass balance for a saturated solution of the slightly soluble 4. (a) [6 marks] Ag₃PO₄.
 - Calculate the pH of the solution produced by adding 10 mL of 1 M (b) (i) hydrochloric acid to 1 L of a solution which is 0.1 M in acetic acid [10 marks] and 0.1M in sodium acetate.
 - (ii) Comment on the pH regulatory effect of the buffer.

[4 marks]

SECTION B: ANSWER ANY TWO QUESTIONS

Write Nernst equation for the following reaction: 5. (a) (i)

$$\frac{1}{4}P_4(s, white) + 3H^+ + +5e^- \leftrightarrow PH_3 \ E^0 = -0.046 \ V$$

[3 marks]

Calculate the equilibrium constant for the following reaction: (ii)

$$Cu(s) + 2Fe^{3+} \leftrightarrow 2Fe^{2+} + Cu^{2+}$$
 [5 marks]

Calculate the cell voltage for the following cell in which the concentration (b) of NaF and KCI were each 0.01 M.

$$Pb(s) + PbF_2(s) + F^-(aq) + Cl^-(aq) + AgCl(s) + Ag(s)$$
 [12 marks]

- Consider the titration of 50.0 mL of 0.0200 M MES with 0.1000 M NaOH.
 MES is an abbreviation for 2 –(N morpholino)ethanesulfonic acid, which is a weak acid with pKa = 6.27.
 - (a) Calculate the pH of the solution after the addition of 0.0, 5.0, 9.99, 10.0, 10.1, 10.3 mL of NaOH solution.

[14 marks]

- (b) Using the provided data, sketch the titration curve and comment on the different regions. [6 marks]
- 7. (a) Describe four types of EDTA titrations.

[12 marks]

(b) The formation constant for CaY^{2-} is $10^{10.65}$. Calculate the concentration of free Ca^{2+} in a solution of 0.10 M CaY^{2-} at pH 10.00 and at pH 6.00.

[8 marks]

END