DIPLOMA IN SCIENCE EDUCATION PART 2

Pure Mathematics 2

Time: 2 hours

Candidates may attempt ALL questions in Section A and at most TWO questions in Section B. Each question should start on a fresh page.

SECTION A (40 marks)

Candidates may attempt ALL questions being careful to number them A1 to A5.

- (a) Find the equation of the line through (0; 2) and parallel to the line $\frac{x}{6} + \frac{y}{8} = 2\frac{1}{2}$
 - (b) Determine the equation of the normal at the point (2,-2) to the curve whose equation is $x^2 + y^2 + 3xy + 4 = 0$.
- **A2.** Solve the following equations for $0^{\circ} \le \theta \le 360^{\circ}$.

(a)
$$2sin\theta = sec\theta$$
 [3]

(b)
$$2\cos^2\theta - 7\cos\theta + 3 = 0$$
 [4]

A3. (a) Show that
$$\frac{1+\cos\theta}{1-\cos\theta} = \cot^2(\frac{\theta}{2})$$
. [4]

- (b) Sketch on the same axis the graph of y = Inx and y = In(x-1)[3]
- A4. Evaluate

(a)
$$\frac{d(x^2 \sin^{-1} 2x)}{dx}$$
. [4]
(b) $\int \frac{5t^4 + 4t^2 - t + 10}{5t^5} dt$.

(b)
$$\int \frac{5t^4 + 4t^2 - t + 10}{5t^5} dt.$$
 [4]

(c)
$$\int_{1}^{2} (2x-3)^4 dx$$
. [4]

A5. The positive quantities x and y are related by the differential equation $\frac{dy}{dx} = (\frac{y}{x})^2$. Find the general solution of this differential equation, expressing y in terms of x. [5]

SECTION B (60 marks)

Candidates may attempt TWO questions being careful to number them B6 to B8.

- **B6.** (a) Given $A = \frac{13}{5}$ and $\cot B = \frac{-8}{15}$, where both A and B are obtuse, find the exact value of $\sin(A B)$. [7]
 - (b) The straight line y = 20 3x meets the circle $x^2 + y^2 2x 14y = 0$ at the points A and B. Calculate the exact length of the chord AB. [6]
 - (c) (i) Prove the identity $tan(\theta + 45^{\circ}) + tan(\theta 45^{\circ}) \equiv 2 tan 2\theta$. [5]
 - (ii) Hence, find the acute angle θ such that $tan(\theta + 45^{\circ}) + tan(\theta 45^{\circ}) = 2$. [3]
 - (d) Find the area enclosed by the curve y = cotx, the x axis and the lines $x = \frac{\pi}{3}$ and $x = \frac{\pi}{2}$, giving your answer to three significant figures. [4]
 - (e) Solve the differential equation $\frac{dy}{dx} = (1-x)(1+y)$. [5]
- **B7.** (a) Use the substitution u = 2x + 3 to find $\int \frac{x}{(2x+3)^3} dx$. [5]
 - (b) Use integration by parts to find the exact value of $\int_1^e (Inx)^2 dx$. [5]
 - (c) Find
 - (i) $\int \cos^2 3x dx$. [3]

(ii)
$$\int tan^2 2x dx$$
. [3]

- (d) Express $3\cos\theta 5\sin\theta$ in the form $R\cos(\theta + \alpha)$, where R > 0 and $0 < \alpha < 90^{\circ}$. [5]
- (e) Hence or otherwise, find the general solution of the equation $3\cos\theta 5\sin\theta = 2$, giving your answer correct to the nearest 0.1°. [5]
- (f) Solve the equation tan3x = 11tanx, giving all solutions such that $0 \le x \le \Pi$. [4]
- **B8.** (a) From the graph of $f(x) = x^2$, sketch on separate diagrams:

(i)
$$f(x-a)$$

(ii)
$$f(x) + a$$
 [2]

(b) Prove that $\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$. [6]

- (c) Find the centre and radius of the circle $2x^2 + 2y^2 8x 7y = 0$ using completing the square method. [5]
- (d) Find the equation of the tangent at the point (0,2) to the circle $x^2 + y^2 4x + 2y 8 = 0$. [6]
- (e) Find the equation of the normal to the curve $y = 2x^2 7x + 2$, at the point (1, -3).
- (f) Find the MacLaurin expansion of e^{2x} in ascending powers of x up to the term in x^3 .

END OF QUESTION PAPER