BINDURA UNIVERSITY OF SCIENCE EDUCATION DEPARTMENT OF ENVIRONMENTAL SCIENCE

BACHELOR OF SCIENCE HONOURS DEGREE IN SAFETY, HEALTH AND ENVIRONMENTAL MANAGEMENT

ESM115

BSC PART I EXAMINATION

Basic Physics

JUN 2025

2 HOURS

INSTRUCTIONS

Answer All Questions from SECTION A, and two questions from SECTION B

SECTION A (ANSWER ALL QUESTIONS IN THIS SECTION) QUESTION 1-10 CARRIES I MARK EACH

- 1. A pulley system lifts a 100N load with a force of 20N. The input distance is 3m and the output distance is 0.5m. The efficiency of this pulley system is:
- A. 62.5%
- B. 75.0%
- C. 83.3%
- D. 92.75%
- 2. It takes 120N of force to raise the flag up the flagpole. The load is 120N. What is the mechanical advantage?
- A. 0
- B. 1
- C. 120
- D. 240

 Page 2 of 6
C. Is always 50%
B. Is equal to 100%
A. Is always less than 100%
7. The efficiency of a simple machine is:
D. Distance.
C. Force.
B. Power.
A. Work.
6. Which term represents a vector quantity?
D. Inclined plane
C. Class 3 lever
B. Class 2 lever
A. Class 1 lever
5. A diving board is an example of what simple machine?
D. Total energy.
C. Non-mechanical energy.
B. Potential energy.
A. Mechanical energy.
4. Friction converts kinetic energy to:
D. 625 J
C. 800 J
B. 500 J
A. 400 J

3. A machine which has an efficiency of 80% raises a load of 50 N through a vertical height

10 m. The work input to the machine is:

8. If the mechanical advantage of a simple machine is 4, then the:A. Output force is 4 times the effort.B. Effort is 4 times the output force.C. Efficiency is 4%.D. The work output is 4 times the input.	
B. Effort is 4 times the output force. C. Efficiency is 4%.	
C. Efficiency is 4%.	
D. The work output is 4 times the input	
D. THE WORK Output to 7 times the input.	
9. Momentum is the product of.	
A. Mass and velocity.	
B. Mass and acceleration.	
C. Velocity and acceleration.	
D. Force and inertia.	
2 seconds? A. 0 m/s. B. 5 m/s. C. 3 m/s. D. 6 m/s.	
11(a). A person uses a 75-newton force to push a 51-kilogram car up a ramp. Th	e ramp is
10 meters long and rises one meter. Calculate the efficiency.	[5]
(b). Why are work and energy both measured in joules?	[4]

(ci).	A car starts from rest and accelerates uniformly over a time of 5.21 seconds for	
1	10 m. Determine the acceleration of the car.	[3]
(ii). S	State the differences between longitudinal waves and transverse waves	[4]
(d).	Classify each of these as a first-, second-, or third class levers:	
(i)	See-saw	[1]
(ii)	Baseball bat	[1]
(iii) I	Door on hinges	[1]
(iv)	Scissors	[1]
SEC	TION B	
12(a)	The motion of a body describes a 5 x 2m rectangle ABDC.	
	A	
	C ◆ ———D	
Afte	r the motion what is the:	
(i) (ii)	distance travelled? displacement?	[2] [2]
(iii)	Convert: 120km/h into m/s	[2]
(iv)	Convert 15m/s into km/h	[2]
(b). mom	Define momentum and show that force may be defined as the rate of change of entum.	[4]
(c).	What do you understand by the conservation of momentum?	[2]
(d)	Complete the table below:	[6]
	Page 4 of 6	

١.

Property	SI unit
Volume	
Force	
Energy	
Pressure	
Acceleration	
Speed	

- 13(a). Explain the difference between energy and power as they are used in physics. [4]
 - (b). Simple machines can be used to obtain four different effects! Describe each effect. [4]
 - (c). In a store, two workers are lifting 5kg bags of flour onto the shelves. There are five shelves, 0.4m apart. The lowest shelf is 0.4m from the floor. Figure 1 shows the two workers.

Figure 1 Shows the worker X and Y lifting a bag from the floor

Worker X lifts three bags from the floor to shelf 2. Worker Y lifts one bag from the floor to shelf 5.

(i).V	Which worker has done more work than the other?	[2		
(ii).	Use calculations of the work done to explain your answer.	[5		
(d). E	Each worker lifts one bag from the floor to shelf 2. Worker X does this more quickl	У		
than worker Y. Which worker exerted the higher power during their lift? Expla				
	swer.	[5]		
an	Swet.	. ,		
14.	A lift rises vertically from rest with constant acceleration. After 4 seconds it is			
	moving upwards with a velocity of 2m/s. It then moves with a constant velocity			
	for 5 seconds. The lift then slows down uniformly, coming to rest after it has been	l		
	moving for a total of 12 seconds.			
(a)(i).	Sketch a velocity-time graph for the motion of the lift.	[4]		
(ii).	Calculate the total distance travelled by the lift.	[3]		
(b).	An airplane accelerates down a runway at 3.20 m/s ² for 32.8 s until it finally lifts			
	off the ground. Determine the distance travelled before take-off.	[3]		
(c).	What factors affect the friction force between two surfaces?	[2]		
(d).	A force of 70N was applied over a distance of 1230mm which lifted a load of			
	468N through 106mm. Determine:			
(i)	VR	[1]		
(ii)	MA Work input	[1] [2]		
(iii) (iv)		[#]		
	[2]			
(v)	What is the effort used to overcome friction?			
	[2]			

End of paper