BINDURA UNIVERSITY OF SCIENCE EDUCATION $\underline{\text{MT107: CALCULUS}}$

Time: 3 hours

Answer ALL questions in Section A and at most TWO questions in section B.

SECTION A (40 marks)

Candidates may attempt ALL questions being careful to number them A1 to A4.

A1. (a) Evaluate:
$$\int_{1}^{3} dx \int_{2}^{4} (40 - 2xy) dy$$
 [7]

(b) Solve the following inequalities giving your solution in interval notation.
$$\frac{m+4}{2}-\frac{4m+3}{5}>2. \hspace{1.5cm} [3]$$

A2. (a) Find
$$Df$$
 and Rf if $f(x) = \frac{1}{\sqrt{3-x}}$. [4]

(b) When do we say a sequence
$$S_n$$
 is convergent. [2]

(c) Determine whether the sequence
$$S_n = \frac{(-1)^{n+1}(n^2)}{n^2+1}$$
, where $n = 1, 2, 3$.. converges or diverges. [4]

(b) A box shape X is described by the triple integral:
$$X = \int_0^3 \int_0^2 \int_0^1 (x+y+z) dz dy dx.$$
 Evaluate X. [7]

A4. (a) Find the area of the region bounded by
$$f(x) = 4 - 4x^2$$
 and $g(x) = 1 - x^2$. [5]

(b) Verify the Mean Value Theorem for
$$f(x) = x^2$$
 where $a = 0$ and $b = 1$. [5]

SECTION B (60 marks)

Candidates may attempt TWO questions being careful to number them B5 to B7.

- **B5.** (a) Give a detailed sketch of the graph of $y = \frac{x^3}{3x 2}$. [12]
 - (b) Let $f(x) = x^2 \sin(\frac{1}{x}), x \neq 0$.
 - (i) Does f(x) have a derivative at x = 0? Justify your answer. [4]
 - (ii) Is f(x) differentiable at x = 0, justify your answer. [4]
 - (c) Find the dimensions of an isosceles triangle of largest area that can be inscribed in a circle of radius a units. [10]
- **B6.** (a) State Stoke's Theorem.

[3]

- (b) Let C be the oriented triangle lying on the plane 2x + 2y + z = 6. Use Stoke's Theorem to evaluate $\int_C F ds$.
- (c) Use the iterated integral to find the area of the region bounded by the graphs of $f(x) = \sin(x)$ and $g(x) = \cos(x)$ between $x = \frac{\pi}{4}$ and $x = \frac{5\pi}{4}$. [10]
- (d) Give five properties of double integrals. [10]
- B7. (a) Obtain a reduction formula for the indefinite integral $I_n = \int x^n \cos(x) dx$ and hence determine I_3 . [10]
 - (b) Find the indefinite integral of $\int \frac{x^3+2}{x^3-x} dx$. [7]
 - (c) State the ϵN definition of the limit of a sequence a_n . [2]
 - (d) Hence show that a sequence whose n^{th} term given by $a_n = (3 \frac{1}{7n^2})$ converges to 3.
 - (e) Show that the sequence $U_n = \frac{2n-7}{3n+2}$ is monotonic increasing. [6]