BINDURA UNIVERSITY OF SCIENCE EDUCATION

FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT: ENGINEERING AND PHYSICS

PROGRAMME HBScED PHYSICS

i. - JUN 2025

[1]

COURSE CODE PH306 (1): ELECTRONICS 2

DURATION: 3 HOURS TOTAL MARKS: 100

INSTRUCTIONS TO CANDIDATES

Answer question one in Section A and any three questions from Section B. Section A carries 40 marks and each question in Section B carries 20 marks.

SECTION A

- 1 (a) Briefly describe the following states of a transistor.
 - (i) cut-off.
 - (ii) saturation. [2]
 - (b) In a certain transistor, the transistor currents are given as $I_C = 10 \text{ mA}$ and $I_B = 70 \text{ } \mu\text{A}$. Calculate I_E , a and B for this transistor. [6]
 - (c) An operational amplifier can be used as a differentiator. Derive its output voltage. [5]
 - (d) A sinusoidal voltage of peak value 10 μV and frequency of 2 kHz is applied as an input to an op-amp differentiator circuit. The values of the differentiating components are given as $R=40~k\Omega$ and $C=3~\mu F$. Determine the output voltage. [4]
 - (e) Prove the following expression using Boolean algebra:

$$\bar{A}BC + A\bar{B}C + AB\bar{C} + ABC = AB + BC + AC$$
 [6]

(f) Determine the truth table for the circuit shown in Fig. 1.1 [4]

Fig. 1.1

- (g) Construct a circuit that is equivalent to an EX-NOR gate using NAND gates only. [6]
- (h) (i) What is meant by flip-flop? [2]
 - (ii) With the aid of a clearly labeled diagram, describe the operation of any one type of flip-flop.

[4]

SECTION B

2 Consider the circuit shown in Fig. 2.1.

Assuming $V_{BE(on)} = 0.7 \text{ V}$, determine I_{BQ} , I_{CQ} and V_{CEQ} for:

- (a) $\beta = 75$. [10] (b) $\beta = 150$.
- (D) B = 150. [10]
- 3 (a) (i) Give any four characteristics of a real operational amplifier. [4]
 - (ii) Show that negative feedback reduces the gain of an operational amplifier. [5]
 - (b) (i) Explain what is meant by null-offset in operational amplifiers. [2]
 - (ii) Describe how null-offset is corrected. [2]

(c) Fig. 3.1 shows an op-amp circuit.

Fig. 3.1

Show that
$$v_o = 4v_1 - 2v_2$$

[6]

An operational amplifier is connected in the circuit shown in Fig. 4.1. The switch S is open, the inverting input is at 0 V and the output voltage is $+V_0$.

Fig. 4.1

(a) Find the potential at the non-inverting input in terms of V_0 .

[3]

(b) The switch S is then closed.

positive.

(i) Explain why the potential of the inverting input becomes progressively more

[3]

- (ii) Calculate the time taken for the potential of the inverting input to reach the same potential as the non-inverting input. [4]
- (iii) With the aid of graphs, describe and explain the subsequent variations in V_0 . [10]

(a) Fig. 5.1 shows a logic circuit. Its truth table (incomplete) is shown in Table 5.1.

Fig. 5.1

Table 5.1

Input			Output	
A	В	C	D	E
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Copy and complete Table 5.1.

[20]

6 The Table below is a truth table for a logic circuit.

Input A	Input B	Input C	Output Q
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	l l
1	1	0	1
1	1	1	0

(a) Derive the Boolean function for the output Q.

[5]

- (b) Draw the logic circuit that produces the output Q in (a).
- Hence, draw another circuit to show how the same output Q can be obtained using only two NOT gates, two AND gates and one OR gate. [10]

END OF PAPER

Page 4 of 4