BINDURA UNIVERSITY OF SCIENCE EDUCATION

FACULTY OF COMMERCE

DEPARTMENT OF ECONOMICS

PROGRAMMES: BSc HONOURS DEGREE IN ECONOMICS

EC 206: INTRODUCTION TO ECONOMETRICS

DURATION: 3 HOURS

INSTRUCTIONS:

. APR 2025

- 1. Answer all questions
- 2. NO CELLPHONES ALLOWED IN THE EXAMINATION ROOM.

Question 1

- a. Using any practical economic problem of your choice, explain the conventional methodology of econometrics highlighting the importance of each of stages and also the challenges that a researcher might face at each of the stages. (15 marks)
- b. In light of the conventional methodology of econometrics, explain how an econometrician can choose between competing models and hypotheses. (5 marks)
- c. Briefly explain the importance of accurate data in conducting the methodology of econometrics. (5 marks)

Question 2

Consider the standard simple regression model: $Y = \alpha + \beta X + \mu$ under the Classical Linear Regression Model Assumptions. Let $\hat{\alpha}$ and $\hat{\beta}$ be the estimator of α and β respectively.

i. Derive the variance of $\stackrel{\circ}{eta}$.

(5 marks)

ii. Prove that the variance of OLS estimator for $oldsymbol{eta}$ is efficient.

(6 marks)

iii. Show that $\hat{\alpha}$ is an unbiased estimator of α .

(8 marks)

iv. Distinguish between regression and correlation.

(10 marks)

Question 3

a. A joint log-linear model is given as:

$$\log L = -n\log \delta_{\mu}^2 - \frac{n}{2}\log 2\Pi - \frac{1}{2\delta_{\mu}^2}\sum (Y - \alpha - \beta X)^2$$

- i. Derive the normal equations under the maximum likelihood estimation. (5 marks)
- ii. Derive the variance of the residuals under MLE and show that it is biased for small samples. (10 marks)
- b. Consider the standard simple regression model; $Y = \alpha + \beta X + \mu$ under the Classical Linear Regression Model Assumptions. Calculate the variance of the error term σ_{μ}^2 . (11 marks)

Question 4

Consider the following savings model:

$$\ln S = \alpha + \beta \ln Y + \rho D + \mu$$

where \ln is the natural logarithm, S is household savings in dollars per month, Y is household monthly income, α , β and ρ are parameters and μ is the error term. D takes the value of 0 for period under which covid 19 restrictions apply and zero otherwise.

- a. Explain the rationale using natural logarithms in the model. (5 marks)
- b. What is the rationale behind using and assigning dummy values as suggested? (5 marks)
- c. Given the manner in which the dummy is assigned, justify the expected sign of $\,
 ho$. (5 marks)
- d. How does one interpret the intercept values of the savings function in the two sub-periods?

(5 marks)

e. Briefly explain what is meant by the dummy variable trap.

(5 marks)

END OF PAPER