BINDURA UNIVERSITY OF SCIENCE EDUCATION

FACULTY OF COMMERECE

DEPARTMENT OF ECONOMICS

1 E JUN 2024

PROGRAMME: BSc HONORS IN ECONOMICS

STATISTICS FOR ECONOMCS 1 EC103 (3)

DURATION: 3 HOURS

TOTAL MARKS: 100

INSTRUCTIONS TO CANDIDATES

- (i) Answer all questions.
- (ii) Each question carries 25 marks.
- (iii) Start each answer on a new page.
- (iv) No cell phones are allowed into the examination room.

QUESTION 1

The following are kilometers travelled by lectures when supervising students in Bindura:

interval 5 7 6 17 14 7 8	Class	25- 40	40 - 55	55 - 70	70 - 85	85 - 100	100 - 115	115 - 130
Frequency 5 7 6 17 14 7 8	interval	\ 		1				
	Frequency	5	7	6	17	14	7	8

- a) Calculate
 - (i) The Mean

[3 Marks]

(ii) The Mode

[3 Marks]

(iii) The Median[3 Marks](iv) Standard deviation[4 Marks](v) Skewness for the data[3 Marks]b) Prepare a Box Plot for the data.[9 Marks]

QUESTION 2

The following are marks obtained in an economics test:

		- 02	74	96	76	98	83	79	85	
92	72	92	74	70	/ 0	1				
						_	70	61	64	-
88	74	50	52	58	78	58	78	61	07	
			7/	67	77	64	67	90	83	
88	68	53	76	07	' '					
								- 1	Marksl	

a) Prepare a Stem and leaf diagram.

[6 Marks]

b) Calculate the arithmetic mean. .

[3 marks]

c) Find the median.

[2 Marks]

d) Calculate the mean deviation.

[3 marks]

e) Calculate the coefficient of mean deviation.

[2 Marks]

f) Calculate the standard deviation.

[3 Marks]

g) Calculate the variance.

[2 Marks]

h) Explain the difference between skewness and kurtosis.

[4 Marks]

QUESTION 3

a) A race driver uses make A 50% of the time, make B cars 30% of the time and make C cars 20% of the time. Of the 25 races he has entered with make A cars he has won 5, of 15 races with make B cars he has won 4 and of 10 races with make C cars he has won 4.

(i) Draw a probability tree diagram. [3 Marks]
(ii) What is the probability of winning a race? [3 Marks]
(iii) P (win/ make A). [3Marks]

- b) In a statistics class, the experience has been that 3 in every 10 students fail an exam. A lecturer draws a sample of 8 students from the class that wrote a statistics exam.
- (i) What is the probability that 3 of these students failed the exam? [2 Marks]
- (ii) What is the probability that no more than 2 of the 10 will fail? [3 Marks]
- (iii) Find the probability that at least 2 out of the 10 students failed the exam.

[3 Marks]

- c) Suppose a number of complaints that a shop receives per day on average is 5. What is the probability that on a certain day, there are:
 - (i) No complaints.

[2 Marks]

(ii) No more than one complaint.

[3 Marks]

(iii) At least three complaints.

[3 Marks]

QUESTION 4

Two fair dice are thrown and their outcomes are added together. Let X be the possible totals from the two dice.

a) Draw a probability distribution of the data.

[6 Marks]

- b) Using the probability distribution of the data in part (a) above, find the probability that:
 - (i) X lies between 4 and 9

[2 Marks]

(ii) X is greater than 8

[2 Marks]

(jii) X is at least 7

[2 Marks]

c) Calculate the expected value of X.

[3 Marks]

d) Calculate the standard deviation of X.

[3 Marks]

- e) A box has 10 green balls and 15 black balls. Three balls are picked at random without replacement.
 - (i) Draw a probability tree diagram.

[3 Marks]

(ii) Find the probability of at least two green balls.

[4 Marks]

FORMULAE

i. Arithmetic Mean for Ungrouped Data
$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

ii. Arithmetic Mean for Group data
$$x = \frac{\sum_{i=1}^{m} f_i x_i}{n}$$

iii. Harmonic Mean
$$= \frac{n}{\sum_{xi}^{1}}$$

iv. Geometric Mean
$$\sqrt[n]{x1. x2. x3. x4....xn}$$

iv. Geometric Mean
$$\sqrt{x_1, x_2, x_3}$$
.
v. Mode = $L_{m} + \frac{c_{m}(f_{m} - f_{m-1})}{2f_{m} - (f_{m-1} + f_{m+1})}$
vi. median = $L_{m} + \frac{c_{m}(\frac{n}{2} - F_{m-1})}{f_{m}}$

vi. median =
$$L_m + \frac{C_m(\frac{n}{2} - F_{m-1})}{f_m}$$

vii. Lower quartile (or first quartile, Q₁)
$$Q_1 = L_q + \frac{C_q(\frac{n}{4}F_{q-1})}{f_q}$$

viii. Upper quartile (third quartile, Q₃ or 75th percentile) Q₃ =
$$L_q + \frac{C_q(\frac{3n}{4} - F_{q-1})}{f_q}$$

ix. Variance Ungrouped data
$$s^2 = \frac{1}{n-1} \sum_{n=1}^{n} (x_1 - \bar{x})^2$$

x. Variance Grouped data
$$s^2 = \frac{1}{n-1} \sum_{i=1}^k f_i (x_i - \bar{x})^2$$

xi. Standard Deviation
$$= \sqrt{\frac{2}{S_x}} = \sqrt{\frac{\sum_{i=1}^{k} f_i(x_i - \bar{x})2}{n-1}}$$

xii. Coefficient of Variation
$$CV = \frac{S_x}{\overline{X}} \times 100\%$$

xiii. Pearson's Coefficient of Skewness
$$SK_p = \frac{3 \text{ (mean-median)}}{\text{standarddeviation}} \text{ or } SK_p = \frac{\text{ (mean-mode)}}{\text{standarddeviation}}$$
xiv. Bowley's Coefficient of Skewness $SK_b = \frac{(Q_3 - Q_2) - (Q_2 - Q_1)}{(Q_3 - Q_1)}$

xv. Conditional Probability
$$P(A/B) = \frac{P(A \cap B)}{P(B)}$$

xvi. Binomial Probability nCrp^x
$$q^{n-x}$$
 or $P(x) = \frac{n!}{x!(n-x)!} p^x q^{n-x}$

xvii.
$$E(x) = \sum x \cdot pi$$
 Std Dev $\sum (x \cdot pi)^2 - (E(x))^2$
Mean $(\mu) = np$ and Standard deviation $(\sigma) = \sqrt{npq}$

xviii. Poisson
$$P(x) = \frac{e^{-a} a^x}{x!}$$
 $P(X = x) = \frac{e^{-\lambda} \lambda^{\chi}}{\chi!}$,

Mean
$$(\mu)$$
 = λ and Standard deviation $(\sigma) = \sqrt{\lambda}$