BINDURA UNIVERSITY OF SCIENCE EDUCATION

BTEC123

BACHELOR OF STATISTICS AND FINANCIAL MATHEMATICS

MATHEMATICS FOR TECHNOLOGISTS

Time: 3 hours

, = JUN 2024

Candidates may attempt ALL questions in Section A and at most TWO questions in Section B. Each question should start on a fresh page.

SECTION A (40 marks)

Candidates may attempt ALL questions being careful to number them A1 to A4.

- A1. State and explain the Gauss elimination steps for solving a system of linear equations. [8]
- A2. Define the following terms
 - (a) Trace of a matrix.

[2]

(b) Rank of a matrix.

[2]

(c) Singular matrix.

- [2]
- A3. Use the Gauss- Jordan method to solve the following system of linear equations [8]

$$x+y-z=6$$
$$3x-2y+z=-5$$
$$x+3y-2z=14$$

- **A4.** (a) Given $f(x, y) = \cos xy e^{\sin x}$, evaluate
 - (i) f_x

[2]

(ii) f_{xx}

[3]

(iii) f_{xy}

[3]

- (b) Given that $\mathbf{a} = 2\mathbf{i} 3\mathbf{j} + 14\mathbf{k}$ and $\mathbf{b} = 5\mathbf{i} 8\mathbf{j} + 11\mathbf{k}$, evaluate:
 - (i) a.b

[3]

		(ii) $\mathbf{a} \times \mathbf{b}$	[3]
		(iii) $2\mathbf{a} - 6\mathbf{b}$	[2]
		(iv) $8a - 12b$	[2]
		SECTION B (60 marks)	
Candid	lates	s may attempt TWO questions being careful to number them B5 to B7.	
B5.	(a)	Find the solution to the linear system of equations,	
		2x + y + z = 10 x + 2y + 3z = 1 -x - y - z = 2	
		using Cramer's Rule	[8]
	(b)	Consider the vectors $\mathbf{u}=(1,2,-1)$ and $\mathbf{v}=(6,4,2)$ in \mathbb{R}^3 . Show that $\mathbf{w}=(9,3)$ is a linear combination of \mathbf{u} and \mathbf{v} and that $\mathbf{w}'=(4,-1,8)$ is not a linear combination of \mathbf{u} and \mathbf{v}	2, 7) near [6]
	(c)	Prove that if ${\bf u}$ and ${\bf v}$ are vectors in \mathbb{R}^n with the Euclidean inner product, t	hen
		${f u}.{f v}=rac{1}{4} {f u}+{f v} ^2-rac{1}{4} {f u}-{f v} ^2$	
			[6]
	(d)	If A and B are matrices of the same order, prove that,	
	. ,	(i) $(AB)^T = B^T A^T$	[3]
		(ii) $(AB)^{-1} = B^{-1}A^{-1}$	[3]
	(e)	Define the following terms:	
		(i) Positive definite matrix	[2]
		(ii) Indefinite matrix	[2]
В6.	(a)	Evaluate the following double integrals:	
		(i) $\iint_D (x+2y)dydx$ where D is the region bounded by the parabolas $y=$ and $y=1+x^2$	$2x^2$ [5]
		(ii) $\iint_R y \sin(xy) dy dx$ where R is the region $R = [1, 2] \times [0, \pi]$	[5]
	(b)	Evaluate the adjoint and hence the inverse of the matrix: $\begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & -1 \\ 1 & 2 & 5 \end{pmatrix}$	[7]

(c) Let $A = \begin{pmatrix} 5 & 0 & -7 \\ 14 & 1 & -1 \\ 1 & 4 & 3 \end{pmatrix}$. Evaluate:

(i)
$$A^T A$$
 [4]

(ii)
$$A^3$$

(iii)
$$A^2$$
 [3]

(iv)
$$A^5$$
 [2]

B7. (a) Let
$$M = \begin{pmatrix} 2 & 1 & 1 \\ 2 & 0 & -1 \\ 0 & 3 & 1 \end{pmatrix}$$
. Evaluate

- (i) The eigenvalues [7]
- (ii) The eigenvectors [8]
- (iii) Normalised eigenvectors [3]
- (b) Write down the R-code for determining quantities in part (a) above. [12]

END OF QUESTION PAPER