BINDURA UNIVERSITY OF SCIENCE EDUCATION

MT504

MScED Mathematics

METRIC SPACES AND TOPOLOGY

= AUG 2024

Time: 3 Hours

Candidates should attempt at most Four questions. Marks will be allocated as indicated.

A1. (a) (i) Define a metric on a set X.

[3]

(ii) Prove that the function d(x, y) = ||x - y|| for $\forall x, y \in \mathbb{R}^n$ is a metric on \mathbb{R}^n .

[5]

- (b) Let X be a metric space. Prove that if G_1 and G_2 are open in X, then $G_1 \cap G_2$ is also open in X. [6]
- (c) Prove that every convergent sequence is bounded.

[5]

(d) Let $A \subset \mathbb{R}^n$, $B \subset \mathbb{R}^n$. Prove that $A^0 \cap B^0 = (A \cap B)^0$.

[6]

A2. (a) Show that for any metric space (X,d),

$$|d(z,y) - d(x,y)| \le d(x,z) \text{ for all } x, y, z \in X.$$
 [4]

(b) Show using extensionality that for all subsets of some universal set,

$$(A \cap B)^c = A^c \cup B^c.$$
 [5]

- (c) Let (X, d) be a complete metric space and f a contraction of X. Then, there exists a unique $x_0 \in X$: $f(x_0) = x_0$. Prove that the point x_0 is called a fixed point of f. [7]
- (d) Show that C[-1, 1] is not complete with respect to the metric,

$$d(x,y) = \left\{ \int_{-1}^{1} |x(t) - y(t)|^2 dt \right\}^{\frac{1}{2}}.$$

Hint: Consider
$$X_n(t) = \begin{cases} 0 & -1 \le t \le 0 \\ nt & 0 < t < \frac{1}{n} \\ 1 & \frac{1}{n} \le t \le 1. \end{cases}$$

[9]

- A3. (a) Given that $S \subset T \subset X$, T is nowhere dense in X. Show that S is nowhere dense in X. [3]
 - (b) Given that $S \subset T \subset X$, S is nowhere dense in T. Show that S is nowhere dense in X. [3]
 - (c) Let X be a metric space. If $\{x_n\}$ and $\{y_n\}$ are sequences in X such that $x_n \to x$ and $y_n \to y$, show that $d(x_n, y_n) \to d(x, y)$. [8]
 - (d) (i) Outline the difference between a partial order and an equivalence relation. [3]
 - (ii) Let A be the set on non-zero integers and let \approx be the relation on $A \times A$ defined as follows:

 $(a,b) \approx (c,d)$ whenever ad = bc. Prove that \approx is an equivalence relation. [8]

A4. (a) Let T_1 and T_2 be two topologies on a non-empty set X. Show that $T_1 \cap T_2$ is also a topology on X.

[8]

(b) Show that the union of two topologies is not necessarily a topology.

[6]

(c) Let $X = \{a, b, c, d\}$. Determine whether or not each of the following classes of subsets of X is a topology on X,

$$T_{1} = \{X, \emptyset, \{a\}, \{a, b\}, \{a, c\}\}$$

$$T_{2} = \{X, \emptyset, \{a, b, c\}, \{a, b, d\}, \{a, b, c, d\}\}$$

$$T_{3} = \{X, \emptyset, \{a\}, \{a, b\}, \{a, c, d\}\{a, b, c, d\}\}.$$
[11]

A5. (a) Prove that the Euclidean n-space \mathbb{R}^n is complete.

[8]

- (b) Let (X, d) and (Y, ρ) be metric spaces and $f: X \to y$. Prove that the following statements are equivalent,
 - (i) f is continuous on X.
 - (ii) for any open set $G \subset Y$, $f^{-1}(G)$ is open in Y.
 - (iii) for any closed set F in Y, $f^{-1}(F)$ is closed in X.

[9]

(c) Let X be a metric space with metric d. Show that,

$$d^1 = \frac{d(x,y)}{1 + d(x,y)}$$

is a metric on X.

8

A6. (a) (i) Define the product of a set A and set B.

[3]

(ii) Show that $A \times (B \cup C) = (A \times B) \cup (A \times C)$.

[7]

(b) Consider the metric space R, with the usual metric and define $f: R \to R$ by

 $f(x) = (1+x)^{\frac{1}{3}}$. Show that f(x) is a contraction on [1, 2]. Using an initial guess of $x_0 = 1$, find the fixed point of f(x) correct to 3 decimal places. [15]

END OF QUESTION PAPER