

BINDURA UNIVERSITY OF SCIENCE EDUCATION Faculty of Science and Engineering Department of Engineering and Physics

BACHELOR OF SCIENCE EDUCATION HONOURS DEGREE

Physics

PH208

Solid State Physics I

Duration: Three (3) Hours

Answer <u>ALL</u> parts of Section A and any <u>THREE</u> questions from Section B. Section A carries 40 marks and each question of Section B carries 20 marks.

Clearly show ALL working

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

$$1\text{Å} = 10^{-10}m = 10 \ nm$$

Avogadro's number, $N_A=6.0225\times 10^{23}~mol^{-1}$

Boltzmann constant, $k_B=1.381\times 10^{-23}\,JK^{-1}$

Permittivity of vacuum, $\varepsilon_0 = 8.8542 \times 10^{-12} \ Fm^{-1}$

Dirac's constant, $\hbar=1.054\times 10^{-34}~kgm^2s^{-1}$

Electron charge, $e = -1.602 \times 10^{-19} C$

$$ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^n; \quad e^{\pm ix} = \cos x \pm i \sin x; \quad \sin^2 x = \frac{1}{2} (1 - \cos 2x)$$

Lennard-Jones potential

$$U_{total}(R) = 2N\epsilon \left[\sum_{j} \left(\frac{\sigma}{p_{ij}R} \right)^{12} - \sum_{j} \left(\frac{\sigma}{p_{ij}R} \right)^{6} \right]$$

	$\sum_j p_{ij}^{-12}$	$\sum_j p_{ij}^{-6}$
bcc	9.11418	12.2533
fcc	12.13188	14.45392

Moseley's law

$$\sqrt{\nu} = a(Z-1)$$

Periodic Table of the Elements

Group I	,	Сгоц И	,		Transition elements									
H	ı													
1.007.9	ĺ													
1s														
Li	3	Be	-1											
6.941		9,0122				Symi	bol — Ca	20-Aig	mic number					
2s¹		$2s^2$					$ess^{\dagger} = 40.0$		inic (minima)					
Na	lΙ	Mg	12				4s2-		ciron configu	tration				
22.990	ļ	24,305					L							
3s1		$3s^{2}$.,									
K	19	Ca	20	Se 2	Ti	22	V 28	Cr 24	Mn 25	Fe 26	Co 27			
39,098		40.078		44.956	47.867		50,942	51.996		55,845	58,933			
4s1		$4s^2$		$3d^14s^2$	$3d^24s^2$!	$3d^34s^2$	3d ⁵ 4s ¹	3d ⁵ 4s ²	3d ⁶ 4s ²	$3d^74s^2$			
Rb	37	Sr	38	Y 39	Zr	40	Nb 41	Mo 42	Tc 43	Ru 44	Rh 45			
85,468		87.62	:	88,906	91.224		92,906	95,94	(98)	101.07	102,91			
5s1		$5s^2$		$4d^{1}5s^{2}$	$4d^25s^2$		4d ⁴ 5s ¹	4d ⁵ 5s ¹	4d ⁵ 5s ²	4d ⁷ 5s ¹	4d ⁸ 5s ¹			
Cs	55	Ba	56	57-71	Hf	72	Ta 73	$\mathbf{W} = 74$	Re 75	Os 76	Ir 77			
132.91		137.33			178.49		180.95	183.84	186.21	190,23	192.2			
6s1		6s ²			$5d^26s^2$?	$5d^36s^2$	5d ⁴ 6s ²	5d ⁵ 6s ²	5d ⁶ 6s ²	5d ⁷ 6s ²			
Fr	87	Ra	88	89-103*	Rf	104	Db 103	Sg 106	Bh 107	Hs 108	Mt 109			
(223)		(226)			(261)		(262)	(266)	(264)	(277)	(268)			
7 <i>s</i> ¹		7s ²			6d ² 7s	2	6d ³ 7s ²							

*Lanthanide series	La	57	Ce	58	Pr	59	Nd	60	Pm	61	Sm	62
	138.91		140.12		140.91		144.24		(145)		150.36	1
	5d 16s2		5d ¹ 4f ¹ 6:	s^2	$4f^36s^2$		$4f^46s^2$		4f ⁵ 6s ²		$4f^66s^2$	
4*Actinide series	Ac	89	Th	90	Pa	91	U	92	Np	93	Pu	94
	(227)		232.04		231.04		238.03		(237)		(244)	l
	$6d^{1}7s^{2}$		6d ² 7s ²		5f ² 6d ¹ 7	$7s^2$	5f ³ 6d ¹ 7	s^2	5f46d1	$7s^2$	5f ⁶ 7s ²]

Note: Atomic mass values given are averaged over isotopes in the percentages in which they exist in nature, ¹ For an unstable element, mass number of the most wable known isotope is given in parentheses.

			Group III	Group IV)	Group V		Grou _l VI	þ	Group VII)	Group 0	р
										H	ı	He	2
										1.007 9		4,002 6	į
										1s1		$1s^2$	
			B	\mathbf{C}	6	N	7	O	8	F	9	Ne	10
			10.811	12,011		14.007		15.999		18,998		20.180	
			2p1	$2p^2$		$2p^{3}$		$2p^{4}$		2p ⁵		2p ⁶	
		i	Al : 13	Si	14	P	15	S	16	Cl	17	Ar	18
			26.982	28.086		30,974		32.066		35.453		39.948	
			3p 1	$3p^2$		$3p^{3}$		$3p^{4}$		3p ⁵		$3p^{6}$	
Ni 28	Cu 29	Z n 30	G a 31	Ge	32	As	33	Se	34	Br	35	Kr	36
58.693	63.546	65.41	69.723	72.64		74.922		78,96		79,904		83,80	
3d ⁸ 4s ²	$3d^{10}4s^1$	$3d^{10}4s^2$	4p1	$4p^{2}$		$4p^{3}$		$4p^{4}$		4p ⁵		4p ⁶	
Pd 46	Ag 47	Cd 48	In 49	Su	50	Sb	51	Te	52	I	53	Xe	ŗ,-
106.42	107.87	112.41	114.82	118.71		121.76		127.60		126,90		131.29	
4đ ¹⁰	$4d^{10}5s^{1}$	4d ¹⁰ 5s ²	5p ¹	$5p^{2}$		$5p^{3}$		$5p^{4}$		5p ⁵		5p ⁶	
Pt 78	Au 79	Hg 80	TI 8	Pb	82	Bi	33	Po	84	Αt	85	Rn	86
195.08	196.97	200,59	204.38	207.2		208.98		(209)		(210)		(222)	
5d ⁹ 6s ¹	$5d^{10}6s^{1}$	$5d^{10}6s^2$	$6p^{1}$	$6p^2$		$6p^{3}$		$6p^{4}$		$6p^{5}$		6ρ ⁶	
Ds 110	Rg 111	Cn 112	113 ^{††}	Fl	14	113	,††	Lv	116	11	7H	11	8 [†]
(271)	(272)	(285)	(284)	(289)		(288)		(293)		(294)		(294)	

Eu	63	Gd	64	Tb	65	Dy (iti	Ho 67	Er 68	Tm 69	Yb 70	Lu 71
151,96		157,25		158,93		162.50		164,93	167.26	168.93	173.04	174.97
$4f^{7}6s^{2}$		$4f^{7}5d^{1}$	δs^2	4f85d1	$6s^2$	4f ¹⁰ 6s ²		4f ¹¹ 6s ²	4f 126s2	4f ¹³ 6s ²	4f ¹⁴ 6s ²	4f ¹⁴ 5d ¹ 6s ²
Am	95	Cm	ЦЦ	Bk	97	Cf ()8	Es 99	Fm 100	Md 101	No 102	Lr 103
(243)		(247)		(247)		(251)		(252)	(257)	(258)	(259)	(262)
$5f^{7}7s^{2}$		5f ⁷ 6d ¹ 7	$r_{\mathcal{S}}^2$	5 <i>f</i> 86d1	$7s^2$	$5t^{10}7s^2$		5f ¹¹ 7s ²	$5t^{12}7s^2$	5f ¹³ 7s ²	5f ¹⁴ 7s ²	5f ¹⁴ 6d ¹ 7s ²

¹⁾ Elements (13, 115, 117, and) 18 have not yet been officially named. Only small numbers of arous of these clements have been observed. Note: For a description of the atomic data, visit physics, inst.gov/PhysRefData/Elements/per_lext.html.

SECTION A

1. (a) Comment on the validity of the assertion that X-ray production is the inverse of the photoelectric effect.
[2]
(b) When illuminated by X-rays, explain why the X-ray diffraction spectra for ordinary glass (composition SiO_2) exhibit one or two diffuse rings on the recording film whilst glass in the form of quartz (composition SiO_2) exhibits a large number of rings.
(c) The X-ray spectrum of a cobalt target $(Z-27)$ contains a strong K_{α} line of wavelength 0.1785 nm and weak K_{α} lines having wavelengths of 0.2285 nm and 0.1537 nm due to impurities. Use Moseley's law to identify the impurities. The constant for K -series may be taken as unity. [10]
(d) Tungsten is a metal with the body centred cubic (bcc) structure. Its density is $19.25 \ gcm^{-3}$ and its atomic weight is $183.84 \ gmol^{-1}$.
(i) Find the nearest neighbour and second nearest neighbour distances in tungsten.
[6] (ii) How many nearest neighbours does an atom in this structure have? [4]
(e) The density of gold in the face centred cubic (fcc) structure is $1.93 \times 10^4 \ kg \ m^{-3}$ and its atomic weight is $197 gmol^{-1}$.
(i) Find the separation between the close packed planes.
(ii) Assuming that the atoms are spheres which just touch one another, estimate the atomic radius.
(f) Show that the Madelung constant for a linear ionic solid having $2N$ ions of
alternate charges $\pm q$ is 2 $ln2$. [5
(g) What was the physical significance of the von Laue photograph? [2

SECTION B

2. Consider the normal modes of a linear chain in which the force constants between nearest-neighbour atoms are alternately K and G. For equal masses and nearest-neighbour separation a/2, the lattice dynamics of the chain is given by

$$\begin{bmatrix} M\omega^{2}(k) - K - G & K + Ge^{-ik\alpha} \\ K + Ge^{+ik\alpha} & M\omega^{2}(k) - K - G \end{bmatrix} \begin{bmatrix} \epsilon_{1} \\ \epsilon_{2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

(a) Show that the dispersion relations are given by

$$M\omega_{\pm}^{2}(k) = \left(K + G \pm \sqrt{K^{2} + G^{2} + 2KGcos(ka)}\right)$$
[5]

(b) Find $\omega_{\pm}(k)$ at k=0 and $k=\pi/a$ for the case K=10G. Sketch the dispersion relation.

[5]

(b) Discuss the dispersion relation and the Brillouin zone the limit $G \to K$.

[5]

(c) Describe what happens when you take the limit $K \to \infty$.

[5]

3. (a) Distinguish between the linear absorption coefficient (μ) and the mass absorption coefficient (μ_m) of a material. Describe the way in which μ_m varies with the wavelength of the incident X-rays.

[6]

- (b) The K-absorption edge of molybdenum (Mo) is at 0.6198 Å.
 - (i) Find the energy (in keV) required to remove a K electron from a Mo atom.

[2]

(ii) What is the corresponding potential difference that must be applied across an X-ray tube to excite *K* spectra of *Mo*?

[2]

(iii) If the L absorptiom edge of for Mo is at 4.912 Å estimate the wavelength of the K_{α} line.

4

(c) Find the CrK_{α} linear absorption coefficient for chromite $(FeCr_2O_4)$ with a density of 5.05 gcm^{-3} , using the physical data provided below:

Element	Atomic weight (g)	$\mu_m \left(cm^2 g^{-1} \right)$
Fe	55.85	115
Cr	52.00	89.9
o `	16.00	40.1

[4]

(d) What thickness of chromite powder (packing fraction 0.54) would be required if only 1 % of an incident beam of CrK_{α} X-rays is to be transmitted?

[2]

4. (a) Find the atomic packing fraction for a simple cubic (sc) structure.

[4]

(b) Sketch part of a simple cubic (sc) structure and indicate on it the (110) and (111) planes.

[2]

(c) For such a lattice of spherical atoms, of radius $0.16 \ nm$, find the areal density $(atoms/m^2)$ on each of the planes in part (b).

[8]

(d) A second type of spherical atom just fits into the centre of each cubic cell. Find its radius and the atomic packing fraction of the modified structure.

[6]

5. (a) Discuss models for the different types of bonds that form stable molecules.

8

(b) A particle of mass m moves in one-dimensional motion through a field for which the potential energy of the particle–field system is

$$U(x) = \frac{A}{x^3} - \frac{B}{x}$$

where A and B are constants.

(i) Find the equilibrium position x_0 of the particle in terms of A and B.

[4]

(ii) Determine the depth U_0 of this potential well.

[3]

(iii) In moving along the x-axis, what maximum force toward the negative x direction does the particle experience?

[5]

6. The amplitude diffraction beam associated with a reciprocal lattice vector $\bar{G} = h\bar{b}_1 + k\bar{b}_2 + l\bar{b}_3$ is given by the expression $F_G = NS_G$ where N is the number of primitive unit cells in the crystal, and the structure factor S_G is given by

$$S_G(h, k, l) = \sum_{i} f_i exp[-2\pi i (hx_i + ky_i + lz_i)]$$

The sum is over all basis atoms at

$$\bar{r}_j = x_j \bar{a}_1 + y_j \bar{a}_2 + z_j \bar{a}_3$$

and f_j is the atomic form factor. In this problem you may assume $f_j=f$ is a constant.

- (a) Using the conventional cubic cell as the unit cell for the face centred cubic (fcc) lattice, write down the positions $\bar{r}_j = (x_j, y_j, z_j)$ of the basis atoms. Show that the amplitude of a diffraction beam will be zero unless (hkl) are either all odd or all even.
- (b) What is the relative spacing of the (110) planes in the fcc lattice compared to a simple cubic (sc) lattice with the same cubic unit cell size? Use this to explain why the (110) diffraction beam of the sc lattice (n=1) has an amplitude of zero for the fcc lattice.

END OF PAPER