BINDURA UNIVERSITY OF SCIENCE EDUCATION

FACULTY OF SCIENCE AND ENGINEERING

2025

[4]

DEPARTMENT: ENGINEERING AND PHYSICS

PROGRAMME BSc HONOURS DEGREE IN COMPUTER SCIENCE / BSc EDUCATION HONOURS DEGREE IN COMPUTER SCIENCE

COURSE CODE PH206 (1): ELECTRONICS 1

DURATION: 3 HOURS TOTAL MARKS: 100

INSTRUCTIONS TO CANDIDATES

1

Answer question one in Section A and any three questions from Section B. Section A carries 40 marks and each question in Section B carries 20 marks.

SECTION A

Convert the following from rectangular to polar form: F = 4 + j 3. (a) Determine the sum of $F_1 = 6 + j 2$ and $F_2 = 5 + j 6$. 4 (b) Find the product of F_1 and F_2 if $F_1 = 6 + j \cdot 4$ and $F_2 = 3 + j \cdot 9$. [4] (c) Given that $F_1 = 3 \angle 80^\circ$ and $F_2 = 12 \angle 20^\circ$, calculate the product of F_1 and F_2 . [4] (d) Transform the following sinusoid in time domain to phasor (e) [5] domain: V = 10cos(70t - 20°) V. Convert the sinusoid corresponding to the following phasor to time (f) domain: $I = -14 \angle 60^{\circ} A$. [5] The instantaneous current of an ac sinusoidal current is given by $=I_m cos\omega t$. (g) Show that $I_{rms} = \frac{I_m}{\sqrt{2}}$. [6] Distinguish between ideal and practical sources in electric circuit theory. [2] (h) Use resistor colour codes to determine the resistances of resistors with the following (i) band colours: green, brown, blue, silver. (1)[2] yellow, violet, silver. (2) [2] grey, red, gold. (3)

SECTION B

2 (a) Using the Wye-Delta transformation, find the equivalent resistance between J and K in Fig. 2.1. [18]

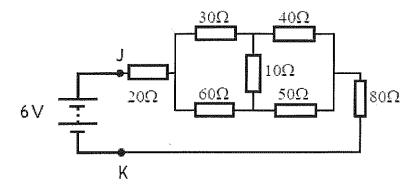


Fig. 2.1

- (b) Use your answer in (a) to determine the value of the current supplied by the power source. [2]
- 3 (a) Using the Superposition Theorem, determine the current through the 1 Ω resistor in the circuit in Fig. 3.1. [16]

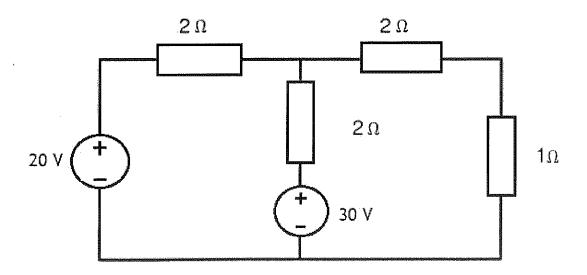
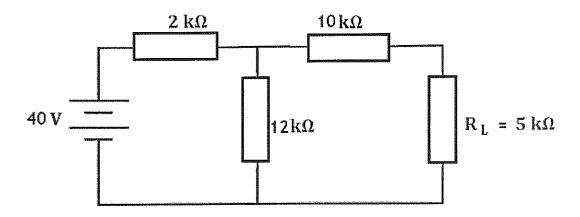



Fig. 3.1

(b) Calculate the amount of heat energy dissipated in the 1 Ω resistor in part (a) over a time interval of 1 hour. [4]

Use Thevenin's Theorem to find the Thevenin voltage (V_{TH}) , Thevenin resistance (R_{TH}) and the load current I_L flowing through and load voltage (V_L) across the load Resistor $R_L = 5 \text{ k}\Omega$ in the network of Fig. 4.1. [20]

4

5

Fig. 4.1

Find the Norton current (I_N), Norton resistance (R_N) and the load current I_L flowing through and load voltage (V_L) across the load resistor R_L = 15 Ω using Norton's Theorem in the network of Fig. 5.1. [20]

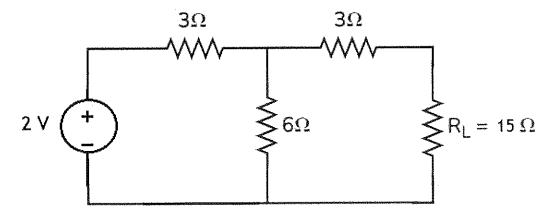


Fig. 5.1

A current waveform is described by the function: i(t) =in Fig. 6.1.

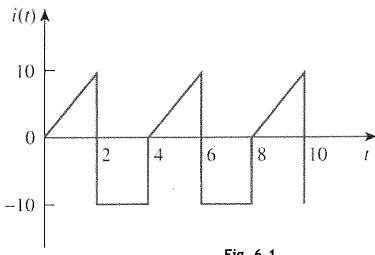


Fig. 6.1

The current is passed through a $2-\Omega$ resistor.

[18] (a) Find the rms value of the current.

[2] Calculate the average power absorbed by the resistor. (b)