BINDURA UNIVERSITY OF SCIENCE EDUCATION FACULTY OF SCIENCE EDUCATION

DEPARTMENT OF MATHEMATICS AND SCIENCE EDUCATION PHE107: PHYSICS FOR COMPUTER SCIENCE

TIME: 3 HOURS

INSTRUCTIONS

Answer question one in Section A and any three questions from Section B. Section A carries 40 marks and each question in Section B carries 20 marks.

- AUG 2002 LT

Physical constants

Electronic charge, $e=1.6 \times 10^{-19}~C$ Boltzmann's constant, $k=1.38 \times 10^{-23}~JK^{-1}$ Mass of an electron, $m_e=9.11 \times 10^{-31}~kg$ Permittivity of free space, $\epsilon_0=8.85 \times 10^{-12}~Fm^{-1}$ Permeability of free space, $\mu_0=4\pi \times 10^{-7}~Hm^{-1}$ Velocity of light in vacuum, $c=3.00 \times 10^8~ms^{-1}$ Universal Gravitational Constant, $G=6.7 \times 10^{-11}~Nm^2kg^{-2}$ Acceleration due to gravity, $g=9.81~ms^{-2}$ Electric potential at infinity, $V_{-}=0$

SECTION A

	QUESTION 1	
(a)	Calculate the angle between the vectors $\vec{r} = (2, 2, 5)$ and $\vec{s} = (-2, -4, 1)$.	[4]
(b)	Distinguish between a dot product and a cross product of vectors?	[2]
(c)	Calculate the cross product of the vectors $\vec{p}=(1,3,5)$ and $\vec{q}=(-2,2,1)$.	[5]
(d)	form and cite of one browner outstanding in (a)	[2]
(e)	An object moves at 5 ms ⁻¹ around a circular path of radius 15 m. Determine the	
` '	centripetal force.	[3]
(f)	Calculate the magnitude of the electric field at a point $2 \times 10^{-7} m$ from	
` '	a proton.	[3]
(g)	A 120 μ F capacitor is charged to a p.d. of 10 V. Calculate the charge acquired b	У
,	the capacitor.	[2]
(h)	A student has available some resistors, each of resistance 100 Ω . Draw circuit	
•	diagrams, one in each case, to show how a number of these resistors may be	
	Collicated to blodder a collinging i enignment oil (i) man == (m)	[6]
(i)	A charged particle carrying twice the magnitude of the basic charge moves with	
	velocity $\vec{v} = 2\vec{i} - 3\vec{j} + \vec{k} m s^{-1}$ in a region where the magnetic field is $\vec{B} = 3\vec{i} + \vec{k} m s^{-1}$	· j +
	$\overrightarrow{4k}T$.	
	i. Calculate the magnitude of the magnetic force \vec{F} on this particle.	[5]
	ii. Verify that \vec{F} is centripetal in nature.	[3]
(j)	What do you understand by inductive reactance?	[1]
(k)	A resistor of resistance 30Ω is connected in series with an inductor of inductive	
(N)	ance 15 Ω and a 240 V supply. Calculate the current flowing in the circuit.	[4]
, cack	ance to 12 and a 2 to 4 supply) calculate the contents from 5 at the enterior	

SECTION B

2 (a) A particle is moving in three dimensions. Its position vector is given by; $r = 2\hat{x} + (4+t)\hat{y} - (2+3t-3t^2)\hat{z}.$

Distances are in metres and the time t in seconds.

(i) What is the velocity vector at t = +5?

[3]

[8]

(ii) Evaluate the speed in ms^{-1} at t = +5.

- [3]
- (iii) Determine the acceleration vector and its magnitude in ms^{-2} at t = +5. [6]
- (b) Find the resultant and direction of the forces given in Figure 1.

Figure 1

Figure 2 shows a system of charges located at the corners of a rectangle in vacuum. It is given that $q_1 = 6.00 \times 10^{-9} C$, $q_2 = -2.00 \times 10^{-9} C$ and $q_3 = 5.00 \times 10^{-9} C$.

Figure 2

Calculate the electric potential at the corner where there is no charge.
Figure 3 shows a circuit containing two voltage sources and some resistors.

[20]

Figure 3

(a) Use Kirchhoff's rules to determine the current passing through the 3 Ω resistor.[18]

Page 2 of 3

