Bindura University of Science Education

Faculty of Science Education

Department of Science and Mathematics Education

Programmes: HBSc Ed (Mathematics)

Course: MT303: Probability Theory an	d Statistick/Probabilit	y Theory 1	AMT104/SFM113
--------------------------------------	-------------------------	------------	---------------

Duration: Three hours

Semester Examinations

Instructions to candidates

- (i) Answer all questions in Section A and two questions from Section B.
- (ii) Begin each question on a fresh page

SECTION A (40 marks)

Candidate may attempt ALL questions being careful to number them A1 to A5

A1. Define the following terms:

(a) Random experiment,	[2]
(b) Sample space,	[2]
(c) Event.	[2]

A2. Let $X_1, X_2, ...$ be a random sample from the double exponential distribution given by:

$$f(x) = \frac{1}{2}e^{-|x|} \qquad -\infty < x < \infty$$

A3. Show that the Binomial distribution with index n and parameter p has mean np and variance npq. [10]

A4. Let $\psi = (-\infty; \infty)$ be the universal set. Use De Morgan's rule to find $([0,4][1,6])^c.$ [4]

- A5. (a) Let $X_1, X_2, X_3, ... X_n$ be independent and identically distributed Poisson random variables each with mean μ . Show that $S = X_1 + X_2 + X_3 + ... + X_n$ has a Poisson distribution. [5]
 - (b) Let $X_1, X_2, X_3, ... X_n$ be independent and identically distributed random variables, each having parameters α and β . Find the distribution of X. [5]

SECTION B (60 Marks)

Candidates may attempt TWO questions being careful to number them B6 to B9.

B6. (a) Let X have the probability density function is given by:

$$f_X(x) = \begin{cases} 2x & 0 \le x \le b \\ 0 & otherwise \end{cases}$$

(i) Sketch the graph of $f_X(x)$.

[3]

(ii) Find and sketch the cumulative frequency of X.

[5]

(iii)Hence, find $P(0 < X < \frac{1}{2})$.

[4]

(b) Let X be a random variable with probability mass function given by:

$$p(x) = \begin{cases} \theta(1-\theta)^{x-1} & if \ x = 1, 2, 3, \dots \\ 0 & otherwise \end{cases}$$

By differentiating with respect to θ both sides of the equation

$$\sum_{x=1}^{\infty} \theta (1-\theta)^{x-1} = 1$$

Show that the mean of the geometric distribution is given by $\frac{1}{\theta}$. [6]

(c) State and prove Bayes theorem. [12]

B7. (a) Let X and Y have the joint probability density function,

$$f_{X,Y}(x,y) = \begin{cases} kxy & x = 0,1,2 \\ 0 & otherwise \end{cases}$$
 $y = 1,2,3$

(i) Find the value of the constant k. [2]

(ii) Compute the marginal distributions of X and Y. [4]

(iii) Calculate P(Y > X). [2]

(iv) Comment on the independent status of X and Y. [2]

(v) Calculate the covariance X and Y. [6]

(b) Let X be a continuous random variable with parameter λ and probability density function given by:

$$f_X(x) = \lambda e^{-\lambda x}, \qquad x > 0. \ \lambda > 0$$

- (i) Show that for any positive number s and t, P(X > s + t | X > s) = P(X > t). [4]
- (ii) Find λ given that EX(X-1)=4.

[5]

(iii) Suppose that P(X < 1) = P(X > 1), find λ and evaluate Var(X).

[5]

B8. (a) State and prove the Chebyshev's inequality.

[12]

- (b) If $X \sim B(n, p)$
 - (i) Find the moment generating function of X.

[4]

(ii) Hence find E(X) and Var(X).

[4, 4]

(c) State and prove the Law of total probability

[6]

END OF THE PAPER