BINDURA UNIVERSITY OF SCIENCE EDUCATION

FACULTY OF ENGINEERING AND SCIENCE

DEPARTMENT OF ENGINEERING AND PHYSICS

BACHELOR OF SCIENCE EDUCATION HONOURS DEGREE IN PHYSICS (HBScEdPh)/ BACHELOR OF SCIENCE HONOURS DEGREE IN ENVIRONMENTAL PHYSICS AND ENERGY SOURCES (HBScEPES)

PH103/HPH121: ELECTRICITY AND MAGNETISM

DURATION: 3 HOURS

TOTAL MARKS: 100

[3]

INSTRUCTIONS TO CANDIDATES

Answer ALL parts of Section A and any THREE questions from Section B. Section A carries 40 marks and Section B carries 60 marks.

Electronic charge, $q=1.6 \times 10^{-19}$ C Permittivity of free space, $\varepsilon_0=8.85 \times 10^{-12}$ F m⁻¹ Permeability of free space, $\mu_0=4\pi x 10^{-7}$ H m⁻¹ Mass of electron, $m_e=9.11 \times 10^{-31}$ kg Mass of proton, $m_p=1.67 \times 10^{-27}$ kg Avogadro constant, $N_A=6.02 \times 10^{23}$ mol⁻¹ Universal Gravitation Constant, $G=6.67 \times 10^{-11}$ N m² kg⁻² Acceleration due to gravity, g=9.81 m s⁻²

SECTION A

- (a) Distinguish between conductors and insulators. Give two examples of each.
 (b) If an electric field exists to the right, in which direction will a negative charge move if placed in the field?
 (c) A wire carries a current of 10 A in a direction that makes an angle of 30° with the direction of the magnetic field of strength 0.3 T. Find the
- (d) Calculate the Coulomb force between two point charges $q_1 = +12nC$ and $q_2 = -18nC$ at a separation distance of 30 cm. State with a reason whether this force is attractive or repulsive? [5]

magnitude of the force on a 5 m length of the wire.

- (e) A 15 cm diameter circular loop of wire is placed in a 0.50 T magnetic field.(i) When the plane of the loop is perpendicular to the field lines, what is the magnetic flux through the loop?[3]
 - (ii) The plane of the loop is rotated until it makes a 35 ° angle with the

field lines. What is the angle θ in the equation $\Phi_B = BA\cos\theta$ for this situation? [2]

- (f) A series LCR circuit with L = 2 H, C = 2 μ F and R = 20 Ω is driven by an ac source of maximum emf, 100 V and of variable frequency. Find the resonance frequency ω_0 , the phase ϕ and maximum current I_{max} when the ac source angular frequency is 400 rads⁻¹. [10]
- (g) Three $20\mu C$ charges are placed on the corners of a square of side 2m. Calculate:
 - (i) the potential V at the fourth, unoccupied corner of the square. [3]
 - (ii) the work needed to bring the fourth positive charge of $20\mu C$ from infinity and place it on the fourth corner of the square. [3]
- (h) Given that 1kJ is required to carry a 10C charge from one point to the other, what is the potential difference between these two points? [3]

SECTION B

2. (a) State Kirchhoff's junction and loop rules.

- [4]
- (b) Use Kirchhoff's junction and loop rules to find the currents flowing through each resistor in Figure 2.1, indicating their directions on a diagram. [10]

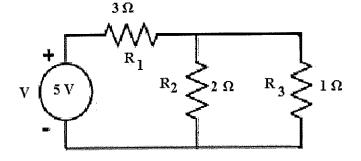
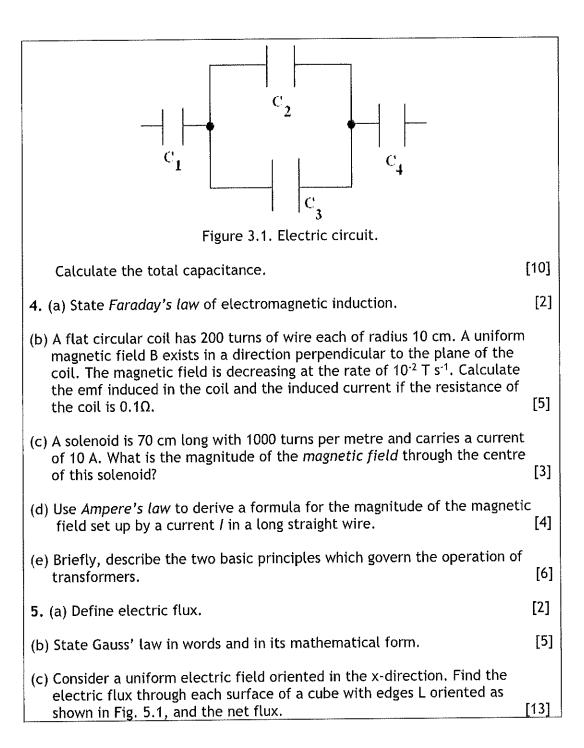



Figure 2.1. Electric circuit.

- (c) Calculate the power delivered to each resistor in Figure 2.1. [6]
- **3.** (a) Explain the similarities and differences between electric forces and gravitational forces. [6]
- (b) A 90pF capacitor is connected to a 12V battery and charged to 12V. How many electrons are transferred from one plate to another? [4]
- (c) Four 2 μ F capacitors are connected as shown in Figure 3.1.

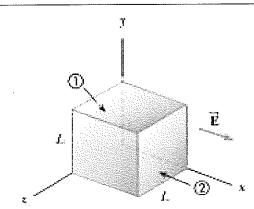


Figure 5.1. Electric flux through a cube.

6. Consider three point charges at the corners of a triangle, as shown in Figure **6.1**, where $q_1=6.00\,nC$, $q_2=-2.00\,nC$ and $q_3=5.00nC$.

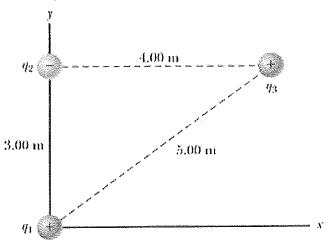


Figure 6.1. Three point charges.

(a) Find the components of the force \vec{F}_{23} exerted by q_2 on q_3 .

[5]

(b) Find the components of the force \vec{F}_{13} exerted by q_1 on q_3 .

[5]

(c) Find the resultant force on q_3 , in terms of components and also in terms of magnitude and direction. [10]

END OF EXAMINATION