BINDURA UNIVERSITY OF SCIENCE EDUCATION MATHEMATICS BRIDGING COURSE

MT015

Time: 2 Hours 15 minutes

Candidates should attempt FOUR questions. Marks will be allocated as indicated.

Each question should start on a fresh page.

QUESTION 1 [20 MARKS]

(a) Solve the following equations

(i)
$$\frac{1}{(3a-1)} = \frac{2}{a-1} - \frac{3}{8}$$

[5]

(ii)
$$4y^2 + 5y - 21 = 0$$

[5]

(iii)
$$x^2 - 8x = -3$$

[5]

(b) Solve the simultaneous equation

$$8a - 3b = 46$$

$$2a - 6b = 22$$

[5]

QUESTION 2 [20 MARKS]

(a) Given that
$$\mathbf{M} = \begin{pmatrix} 4 & -9 \\ -2 & 5 \end{pmatrix}$$
, $\mathbf{N} = \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}$ and $\mathbf{L} = \begin{pmatrix} 2d & 4 \\ 1 & 3 \end{pmatrix}$. Find;

- (i) M + 2N
- (ii) **MN**
- (iii) The value of d which makes matrix L singular.

[6]

(b)

In the diagram, PRT and OQT are straight lines. $\overrightarrow{OP} = 2p$, $\overrightarrow{OQ} = 3q$, and $\overrightarrow{PR} = 3p - q$.

(i) Express
$$\overrightarrow{RQ}$$
 as simply as possible in terms of **p** and/or **q**. [2]

(ii) Given that
$$PT = mPR$$
, Express \overrightarrow{PT} in terms of p , q and m . [2]

(iii) Given also that OT = nOQ form an equation connecting p, q, m and n. Hence find the value of m and the value of n. [4]

(c)
$$\begin{pmatrix} 4x & x-5 \\ 1-3x & x \end{pmatrix}$$
 is the inverse matrix of $\begin{pmatrix} x & 5-x \\ 3x-1 & 4x \end{pmatrix}$. Find two values of x for which this is true.

QUESTION 3 [20 MARKS]

(a). Write as a single fraction in its lowest terms:
$$\frac{2x+3}{x+4} - \frac{5}{3x-2}$$
. [4]

(b) Factorize
$$5ay - 2bx - 7by + 5ax$$
. [3]

(c). Write the ratio
$$75g: 3kg$$
 in its simplest form. [3]

(d) The length of a rectangle is increased by 10% and the width of the same rectangle is decreased by 10%. Find the area of the new rectangle as a percentage of the original rectangle.

[5]

(e)

x	4	9	d
у	3	C	0.6

y is inversely proportional to the square root of x. Find the value of c and the value of d. [5]

QUESTION 4 [20 MARKS]

- (a) If $\cos X = -\frac{12}{13}$ find $\sin X$ [3]
- (b) In the triangle ABC, find C given that AB= 5cm, BC= 3cm and $A=35^{\circ}$. [4]
- (c) Given that CD = 5 and BC = 12 in the triangle BCD below in Fig 1.

Fig 1.

Find sin ABD, cos ABD and tan ABD.

[5]

- (d) In $\triangle XYZ, XY = 14cm$, $\angle Y = 121^{\circ}$ and YZ = 26.9 cm. Find XZ. [4]
- (e) In \triangle ABC, a = 9cm, b = 16cm and c = 11 cm. Find, to the nearest degree, the largest angle in the triangle. [4]

QUESTION 5 [20 MARKS]

QUESTION 6 [20 MARKS]

- (a) In a group of five boys, three play soccer and two play hockey.
- (i) One boy is chosen at random, calculate the probability that he is a soccer player. [3]
- (ii) Two boys are chosen at random, calculate the probability that one plays soccer and the other plays hockey. [5]

(b) Answer the whole of this question on a sheet of graph paper.

A farmer had 100 pigs. He weighed them and their masses were recorded and summarised as shown in the table below 1

Mass (kg)	$40 < m \le 60$	$60 < m \le 70$	$70 < m \le 80$	$80 < m \le 90$	$90 < m \le 100$	$40 < m \le 140$
Number	12	14	18	22	14	20
of pigs						

(i) Calculate the values of p and q in the table below

[2]

Mass (kg)	m≤ 40	m≤ 60	m≤ 70	m≤ 80	m≤ 90	m≤ 100	m≤ 140
Number	0	12	26	p	66	q	100
of pigs							

(ii) Using a horizontal scale of 2cm to represent 20 kg and a vertical scale of 2cm to represent 20 pigs, draw a smooth cumulative frequency curve to illustrate this information. [5]

(iii)Showing your method clearly on the graph, use the graph to estimate

- (a) Median mass
- (b) The number of pigs whose masses were more than 65 kgs but less than 120 kg. [3]
- (iv) The data in table 1 may also be expressed in the form given below

Mass (kg)	$40 < m \le 60$	$60 < m \le 80$	$80 < m \le 100$	$100 < m \le 140$
Number of pigs	12	32	36	20

When a histogram is drawn to illustrate this information, the height of the column represent pigs with mass m in the interval $40 < m \le 60$ is 2,4. Without drawing the histogram, calculate the height of the column that represent values of m in the ranges

(a)
$$60 < m \le 80$$

(b)
$$100 < m \le 140$$

[2]

END OF EXAMINATION