BINDURA UNIVERSITY OF SCIENCE EDUCATION

[4]

HONORS DEGREE IN SCIENCE EDUCATION (HBScED)

MT304: Vector Calculus

Time: 2 hours

Candidates may attempt ALL questions in Section A and at most TWO questions in Section B. Each question should start on a fresh page.

SECTION A (40 marks)

Candidates may attempt ALL questions being careful to number them A1 to A5.

- A1. (a) Distinguish between vector and scalar giving an example for each one. [3] (b) Suppose $\overline{V} = (a, b, c)$. Find the unit vector of \overline{V} . (c) Find b so that 2i - 3j + 5k and 3i + bj - 2k are orthogonal vectors. [3]
- A2. Define the following terms: [3] (a) permutation symbols, [1](b) linearly independent vectors.
- **A3.** Prove that $(\overline{U} \times \overline{V})_i = \epsilon_{ijk} \overline{U}_j \overline{V}_k$ using tensor analysis. [7]
- **A4**. Use the definition of derivative of a vector function to find $\vec{G}'(t)$ where

$$\vec{G}(t) = ti - t^2j + 4tk. \tag{6}$$

A5. (a) Find the unit vector parallel to the line 2x - 1 = 3y = 2z + 4. [3] (b) Show that $\frac{d\widehat{N}}{dS} = \tau \widehat{B} - \varkappa \widehat{T}$. [10]

SECTION B (60 marks)

Candidates may attempt TWO questions being careful to number them B6 to B8

B6. (a) Given that
$$\overrightarrow{E}(x, y) = x^2 i + y^2 j$$
, show that $\overrightarrow{E_x} \cdot \overrightarrow{E_y} = 0$. [5]

	(b) Find the unit normal vector for a surface S represented by $x = x, y$	(-5,5,7)
	where x and y are parameters.	[7]
	(c) Suppose $\lim_{t\to a} \overline{F}(t) = \overrightarrow{H}(t)$ and $\lim_{t\to a} \overline{G}(t) = \overrightarrow{K}(t)$. Prove that	
	$\lim_{t \to a} \overline{\{F}(t) + \overline{G}(t)\} = \overrightarrow{H}(t) + \overrightarrow{K}(t).$	[6]
	(d) Sketch the vector field $\overline{F} = -yi + xj$.	[7]
	(e) Evaluate the line integral of $\overline{F}(x, y, z)$ along the path C such that	
	$(0, \overline{E}(t) - (\cos t + \sin t)) 0 < t < 1$	[5]
B7.	(a) Find the directional derivative of $\varphi = 4e^{2x-y+2}$ at the point $(1, 1, 1)$ in	the direction [7]
	towards the point (-3, 5, 6).	
	(b) Verify Stoke's Theorem for the vector field $\vec{F} = (2x - y)i - yz^2j - y^2$	[12]
	the surface $x^2 + y^2 + z^2 = 1$ above the xy-plane and C its boundary.	[]
	(c) Let $F(x, y, z) = F_1(x, y, z)i + F_2(x, y, z)j + F_3(x, y, z)k$. Show that	
	$F_{y}(x, y, z) = \frac{\partial F_{1}}{\partial y}i + \frac{\partial F_{2}}{\partial y}j + \frac{\partial F_{3}}{\partial y}k.$	[6]
	(d) Show that $\nabla(F+G) = \nabla F + \nabla G$.	[5]
	* 1	
B8.	(a) If $\overline{M}(x, y) = e^{xy^2}i + (x^2 + y)j + x\cos yk$. Calculate:	
	(i) $\overline{M_x}$,	[2]
	$(ii) \overline{M_y},$	[2]
	(iii) $\overline{M_{xy}}$	[3]
	(iv) $\overline{M_x} \times \overline{M_y}$,	ارحا
	$(v) \overline{M_x} \cdot \overline{M_y}$	[3]
	(b) (i) Define a curl.	[1]
	(ii) Show that the vector field $\vec{V}(t) = 2xyi + (x^2 + z)j + yk$ is conserved	ative. Hence
	find its scalar potential.	[4,3]
	(c) (i) Define the term curvature.	[1]
	(ii) Let C be the curve represented by $\vec{r}(t) = a\cos t i + a\sin t j + btk$. F	ind the
	(II) Let C be the curve represented by 7 (c)	[6]
	curvature of C.	[0]
	(d) For vector field $\vec{F}(t) = yi + xzj + (x + y)k$, write its cylindrical coord	inate system. [5]
	<u>.</u>	

B7.

END OF PAPER

Page 3 of 3