BINDURA UNIVERSITY OF SCIENCE EDUCATION FACULTY OF SCIENCE AND ENGINEERING

AEH208

JUN 2024

Department of Engineering and Physics

Bachelor of Science (Honours) Degree in Agricultural Engineering

Strength of Materials

3 HOURS (100 Marks)

INSTRUCTIONS

This paper contains 6 questions.

Answer any FOUR questions. Each carries 25 marks

Note: At the end of the exam, you will find a summary with equations and properties of some materials and structure that will be useful for the solution of the exam.

Question 1

A rod of length L, cross-sectional area A_1 , and modulus of elasticity E_1 , has been placed inside a tube of the same length L, but of across-sectional area A_2 and modulus of elasticity E_2 , Figure 1. What is the deformation of the rod and tube when a force P is exerted on a rigid end plate as shown?

V2 Question 2

The torques shown, Figure 2, are exerted on pulleys A, B and C. Knowing that both shaft are solid, determine the maximum shearing stress:

a) In shaft AB

[8 marks]

b) In shaft BC

[8 marks]

c) The smallest diameter of shaft BC for which the largest shearing stress in the assembly is not increased.

[9 marks]

Figure 2

Question 3

For the bean and loading shown in Figure 3, determine the maximum normal stress due to bending on a transverse section at C.

[25 marks]

Figure 3

V2 **Question 4**

The cylindrical portion of the compressed air tank shown, Figure 4, is fabricate of 8 mm thick plate welded along a helix forming an angle $\beta=30^\circ$ with the horizontal. Knowing that the allowable stress normal to the weld is 75 MPa , determine the largest gage pressure that can be used in the tank.

Figure 4

Question 5

An overhanging W920X446 rolled-steel beam supports a load P as shown, Figure 5. Knowing that P = 700 kN , a = 2.5 m , and σ_{all} = 100 MPa , determine:

a) The maximum value of the normal stress σ_m in the beam.

[10 marks]

- b) The maximum value of the principal stress σ_{max} at the junction of the **[10 marks]** flange and web.
- c) Whether the specified shape is acceptable as far as these two stresses **[5 marks]** are concerned.

Figure 5

Question 6

An axial load P of magnitude 560 kN is applied at a point on the x axis at a distance e=6 mm from the geometric axis of the W200X46.1 rolled-steel column BC, Figure 6. Using E=200 GPa , determine:

a) The horizontal deflection of end C.

[12 marks]

b) The maximum stress in the column.

[13 marks]

Figure 6.

EQUATIONS AND PROPERTIES

$$\delta = \sum_{i} \frac{P_i \cdot L_i}{A_i \cdot E_i}$$

$$I_m = \frac{1}{12} \cdot b \cdot h^3$$

$$\sigma = \frac{p \cdot \tau}{\delta}$$

$$Y_b = c - t_f$$

$$\tau_{max} = \frac{T \cdot c}{J}$$

$$\sigma_b = \frac{Y_b}{c_{rs}} \cdot \sigma_m$$

$$M_{max} = P \cdot a$$

$$c = \frac{d}{2}$$

$$\sigma_m = \frac{|M_{max}|}{S_x}$$

$$\tau_{xy} = \frac{\left| V_{max} \right| \cdot Q_b}{I_x \cdot t_m}$$

$$A_f = b_f \cdot t_f$$

$$Y_f = \frac{1}{2} \cdot \left(c_{rs} + Y_b \right)$$

$$Q_b = A_f \cdot Y_f$$

$$P_{cr} = \frac{\pi^2 \cdot E_b \cdot I_y}{L_e^2}$$

$$R = \sqrt{\left(\frac{\sigma_b}{2}\right)^2 + {\tau_{xy}}^2}$$

$$\sigma_{max} = \frac{\sigma_b}{2} + R$$

$$G_{max} = \frac{P}{A_b} + \frac{M_{max}}{S_y}$$

EQUATIONS AND PROPERTIES
$$\delta = \sum_{i} \frac{P_{i} \cdot L_{i}}{A_{i} \cdot E_{i}} \qquad I_{m} = \frac{1}{12} \cdot b \cdot h^{3} \qquad \sigma = \frac{p \cdot r}{\delta} \qquad Y_{b} = c - t_{f}$$

$$\tau_{max} = \frac{T \cdot c}{J} \qquad \sigma_{b} = \frac{Y_{b}}{c_{rs}} \cdot \sigma_{m} \qquad M_{max} = P \cdot a \qquad c = \frac{d}{2}$$

$$\sigma_{m} = \frac{|M_{max}|}{S_{x}} \qquad \tau_{xy} = \frac{|V_{max}| \cdot Q_{b}}{I_{x} \cdot t_{w}} \qquad A_{f} = b_{f} \cdot t_{f} \qquad Y_{f} = \frac{1}{2} \cdot \left(c_{rs} + Y_{b}\right)$$

$$Q_{b} = A_{f} \cdot Y_{f} \qquad P_{cr} = \frac{\pi^{2} \cdot E_{b} \cdot I_{y}}{L_{e}^{2}} \qquad R = \sqrt{\left(\frac{\sigma_{b}}{2}\right)^{2} + \tau_{xy}^{2}}$$

$$\sigma_{max} = \frac{\sigma_{b}}{2} + R \qquad G_{max} = \frac{P}{A_{b}} + \frac{M_{max}}{S_{y}} \qquad Y_{m} = e_{e} \left(\sec\left(\frac{\pi}{2} \cdot \sqrt{\frac{P}{P_{cr}}}\right) - 1\right)$$

$$J = \frac{\pi}{2} \cdot c^{A} \qquad M_{max} = P \cdot \left(Y_{m} + e_{e}\right) \qquad G_{max} = \frac{P}{A_{s}} + \frac{M_{max} \cdot c_{c}}{I_{y}}$$

$$J = \frac{\pi}{2} \cdot c'$$

$$M_{max} = P \cdot (Y_m + e_e)$$

$$G_{max} = \frac{P}{A_s} + \frac{M_{max} \cdot c_o}{I_u}$$

		2.5.5.	Flange		Web		Axis X-X			Axis Y-Y	
Designation†	Area A, mm²	Depth d, mm	Width b ₀ mm	Thick- ness In mm	Thick- ness L _o , mm	<i>l.</i> 10 ⁴ mm	S _x 10 ³ mm ³ ,	r. mm	. 10º mm⁴	S _y 10 ⁷ mm ¹	r _y . mm
W920 × 446	57000	933	423	42.70	24.0	8470	18200	385	540	2550	97.3
	25600	903	304	20.10	15.2	3250	7200	356	94.4	621	60.7
W410 × 114	14600	420	261	19.30	11.6	462	2200	178	57.2	438	62.6
85	10800	417	181	18.20	10.9	315	1510	171	18.0	199	40.8

CHANGE TO THE STATE OF THE STAT			Flange		Web	Andreas	Axls X-X		Axia Y-Y		
Designation	Area A. mm	Depth d, mm	Width b _b mm	Thick- ness to mm	Thick- ness L, mm	10° mm	S, 10 ³ mm ³	muli L	10° mm*	<i>S</i> , 10 mm³	r, mm
W310 × 143	18200	323	309	22.9	14.0	348	2150	138	113	731	78.8
60 52		303 318	203 167	13.1 13.2	7.5 7.6	129 119	851 748	130 134	18.3 10.3	180 123	49.1 39.3
W250 × 167		289 264	265 257	31.8	19.2 11.9	300 164	2080 1240	119 113	98.8 55.5	746 432	68.1 65.6
W200 × 86		222	209	20.6	13.0	94.7	853	92.4	31.4	300 175	53.2 51.7
52 46		206 203	204 203	12.6 11.0	7.9	52.7 45.5	512 448	89.0 87.9	1	151	51.1

A wide-flange shape is designated by the letter W followed by the nominal depth in millimeters and the mass in kilograms per meter.