BINDURA UNIVERSITY OF SCIENCE EDUCATION ## **HBsc Statistics and Financial Mathematics** ## SFM 413 Financial Derivatives Time: 3 hours Candidates may attempt ALL questions in Section A and at most TWO questions in Section B. Each question should start on a fresh page. ## SECTION A (40 marks) Candidates may attempt ALL questions being careful to number them 1 to 3. 1. (a) Define the following terms. i. Option in the money. ii. Short position. iii. Divisibility. iv. Arbitrage. (b) Denote the European call option price in the Black- Scholes model by. $$C^E = SN(d_1) - Xe^{-rT}N(d_2)$$ where $$d_1 = \frac{\ln \frac{S}{X} + (r + \frac{1}{2}\sigma^2)T}{\sigma\sqrt{T}}$$ Prove that the theta of an option is given by $$\theta = \frac{-s\sigma}{2\sqrt{2\pi}T}e^{-d_1^2} - rXe^{-rT}N(d_2)$$ [11] - 2. Let $S_0 = \$50$, r = 5%, u = 0.1 and d = -0.1. Find the price of a European call and put option with strike price X = \$60 to be exercised after N = 3 steps. . [9] - 3. Distinguish between [4] | | ` ' | - | | |----|-----|---|--------------| | | (b) | Hedging and Speculation. | [4] | | | | SECTION B (60 marks) | | | | Can | adidates may attempt TWO questions being careful to numbe to 6 | r 4 | | 4. | (a) | State and Prove the Coxx- Ross Rubinstein formula. | [15] | | | (b) | A stock is currently \$50. It is expected to go up by $u=0.1$ down by $d=-0.1$. The risk free interest rate is 5% per ann What is the price of the European call and put option with strike price of \$60, to be exercised after 5 steps? Apply the CRR formula assuming periodic compounding. | um. | | | | | | | 5. | (a) | Prove that for a stock paying no dividends, the forward prior $F(0;T) = S0e^{rT}$. | e is
[15] | | | (b) | Compute the value of an American put and call options expiat time 3 with strike price $K = \$70$ on a stock with initial price $S_0 = \$65$ in a binomial tree model with $u = 0.1$, $d = -0.05$ $r = 0.03$. | rice | | | (c) | Prove that the future value V_t increases if any one of the paraters m , t , r or P increases while others remain constant. | me-
[5] | | 6. | (a) | The Black Scholes formula has been used to price European American options among others. | and | | | | i. What factors affect the Black Scholes formula?. ii. State the Black Scholes formula for European put opticlearly giving meaning of each parameter. iii. State the assumptions made in order to apply the Black holes formula. | [5] | | | (b) | The stock price six months from expiration of an option is The exercise price of the option is \$40 and the risk free interact is 10% per annum. The stock has a volatility of 20% annum. Calculate the price of a European call option. | eres | | | (c) | State and prove the Put- Call parity theorem. | [10 | | | | | | (a) Sub- martingale and super martingale.