
3. The diagram below shows the mass spectrum of methanol.

(a) Identify the fragments giving rise to the major peaks in the spectrum.

[6 marks]

(b) An analysis of the composition of a newly discovered element, **Z**, showed the following results:

5 1 45 01 10 1	
Isotope	Relative abundance (%
$^{20}\mathrm{Z}$	90.91
^{21}Z	0.16
²² 7.	8.93

On the mass spectrum of \mathbf{Z} , the peak due to isotope $^{21}\mathbf{Z}$ had a peak height of 20 mm.

- (i) Deduce the heights of the other two peaks. [2 marks]
- (ii) Draw a sketch of a mass spectrum of **Z** using these heights.

[4 marks]

- (iii) Calculate the relative atomic mass of Z. [4 marks]
- (c) State any two common applications of mass spectrometry. [4 marks]
- 4. (a) Name the any 3 essential components of a mass spectrometer and give a function of each. [6 marks]
 - (b) What are the advantages of mass spectrometry as an analytical technique?

 [4 marks]
 - (c) Explain how separation of components is achieved in chromatography.

BINDURA UNIVERSITY OF SCIENCE EDUCATION

CHEMISTRY DEPARTMENT

DIPLOMA IN SCIENCE EDUCATION

DCH007/DC005 ANALYTICAL CHEMISTRY

TIME:

APR 2025

2 HOURS

Answer QUESTION ONE 1 and FOUR (4) OTHERS. Each question carries 20 marks.

1. (a) Distinguish between:

(i) Analyte and matrix.

[3 marks]

(ii) Determinate error and indeterminate error.

[3 marks]

(iii) Qualitative and quantitative analysis.

[3 marks]

(b) What do you understand by the term 'partition coefficient'?

[2 marks]

(c) 20 g of an organic compound is dissolved in 100 cm³ of water. If the organic compound is extracted with ether, show that the quantity extracted by two 25 cm³ portions of ether portions is larger than that extracted by one 50 cm³ portion.

(Partition coefficient = 4)

[9 marks]

SECTION A: Answer TWO (2) questions from this section.

2.

(a) What do you understand by the term relative atomic mass?

[2 marks]

- (b) Outline, with the aid of a labelled diagram, the use of the mass spectrometer in the determination of 'relative atomic masses'. [7 marks]
- (c) Naturally occurring gallium, Ga, is a mixture of two isotopes, gallium-69 and gallium-71. Use this information, together with the relative atomic mass of Gallium from the Data Booklet, to calculate the percentage abundance of each isotope.[3 marks]
- (d) The mass spectrum of chlorine, $Cl_{2(g)}$, consists of peaks at m/e values of 70, 72 and 74 of relative abundance 9:6:1. Explain these observations as fully as you can.

[8 marks]

7. The data below show the masses of seven Zimbabwean \$ 1 bond coins.

Coin	Mass
	(g)
1	3.081
2	3.094
3	3.107
4	3.056
5	3.112
6	3.174
7	3.198
,	

(a) Using the data above, calculate the following:

[2 marks] the mean mass. [3 marks] the standard deviation. [3 marks] the variance. [2 marks] the coefficient of variation. (iv) (b) Describe in detail the steps taken when conducting a mass spectrometric [4 marks] analysis. [3 marks] (c) What is the principle behind chromatography? [3 marks] (d) What are the advantages of using HPLC over GLC?

END OF QUESTION PAPER

[2 marks]

(d) With the aid of a fully labeled diagram, describe the essential steps involved in performing thin layer chromatography. [8 marks]

SECTION B: Answer **TWO (2)** questions from this section.

5. (a) Describe the steps followed in performing an analytical procedure.

[9 marks]

(i) Outline the principle of solvent extraction.

[4 marks]

(ii) What are the factors that affect the efficiency of solvent extraction?

[3 marks]

- (b) State the advantages of solid phase extraction over liquid-liquid [4 marks] extractions.
- 6. (a) A mixture of alanine, aspartic acid and serine was analysed by thin layer chromatography (TLC), with SiO2 as a stationary phase. The TLC mobile phase was 95% ethanol and 5% H₂O.

Alanine H₂NCH(CH₃)CO₂H Aspartic acid H₂NCH(CH₂CO₂H)CO₂H H₂NCH(CH₂OH)CO₂H Serine

Deduce with reasons the amino acid with

1. the highest R_f value

[3 marks]

[3 marks] 2. the lowest R_f value

- (ii) The stationary phase, adsorbed SiO₂, was mixed with silver ions, Ag⁺. State and explain how the magnitudes of the Rf values were affected by the
- (b) Draw a labeled TLC chromatogram that can be used to show that all the three amino acids in 6(a) were present in the analysed mixture. [4 marks]
- (c) State two other applications of TLC.

[2x2 marks]

(d) Give two advantages of TLC over paper chromatography?

[2 marks]