BINDURA UNIVERSITY OF SCIENCE EDUCATION

FACULTY OF SCIENCE AND ENGINEERING

AEH 509

Department Of Engineering and Physics Bachelor of Science (Honours) in Agricultural Engineering Design and Operation of Pressurised Irrigation Systems

3 HOURS (100 MARKS)

INSTRUCTIONS

Answer any FOUR questions. Each question carries 25 marks.

Question 1

- a. Briefly explain the following terms:
 - [2 marks] Water emitter [2 marks] Tensiometer. ii. [2 marks] Sodium adsorption rate (SAR). iii. [2 marks] Reference crop evapotranspiration (ETo). iv. [2 marks] Net irrigation requirement. ٧. [2 marks] Leaching requirement. vi. [2 marks] Irrigation cycle. vii.

Table 1

Type of soil	Light (coarse) texture	Medium texture	Heavy (fine) texture
Saturation capacity (SC) % weight	25-35%	35-45%	55-65%
Field capacity (FC) % weight	8-10%	18-26%	32-42%
Wilting point (WP) % weight	4-5%	10-14%	20-24%
SC/FC	2/1	2/1	2/1
FC/WP	2/1	1.85/1	1.75/1
Bulk density(volume weight)	1.4-1.6 g/cm ³	1.2-1.4 g/cm ²	1.0-1.2 g/cm ^s
Soil available water (moisture) by volume (FC-WP x bulk density)	6%	12%	16-20%
Available moisture (Sa) in mm per metre soil depth (FC-WP x bulk density x 10)	60 mm	120 mm	160-200 mm
Soil water tension in bars: • at field capacity • at wilting point	0.1 15.0	0.2 15.0	0.3 15.0
Time required from saturation to field capacity	18-24 h	24-36 h	36-89 h
Infiltration rate	25-75 mm/h	8-16 mm/h	2-6 mm/h

b. Given the soil physical properties in the above table 1, the field capacity (FC) of a 45-cm layer of soil is 18 percent. How much water in cubic metres per hectare does this layer hold?

Ouestion 2

With an aid of diagram, describe the main components of a pressurised piped systems

[25 marks]

Question 3

Design a drip irrigation for a watermelon plot, given the preliminary data below **Area and crop**

The plot dimensions are 120×83 m (about 1 ha), planted in the open with watermelons in rows 2.20 m apart and spaced along the rows at 0.5 m. The plot is divided into two parts, each with 54 rows 40.5 m long. There are 81 plants per row. Thus, there are 4 374 plants in each part, i.e. 8 748 plants in the whole plot and 108 plant rows.

Soil, water and climate

Heavy texture soil with low permeability (approximately 6 mm/h) and a high water holding capacity. The source of water is a nearby open water reservoir; it is of good quality but with a high impurity content of organic origin (algae). The crop growing season is from early April to early July; the evaporation pan average maximum readings are 3.3 mm/d in April, 4.64 mm/d in May and 6.13 mm/d in June.

Crop water requirements and irrigation schedule

The maximum irrigation requirements of the watermelons are during the mid-season stage and the yield formation in late May-early June, when the k_c value is 1.0. The average reading for the two months is 5.38 mm/d, which multiplied by a correction factor of 0.66 gives an ET_o of 3.55 mm/d. As $k_c = 1.0$, ET_c = 3.55 mm/d. The system's application efficiency is 90 percent.

Therefore, the daily gross requirements at peak are:

 $3.55 \times 0.90 \div 100 = 3.94 \text{ mm/d} 3.94 \times 10 \times 1 \text{ ha} = 39.4 \text{ m3/d}$

The irrigation scheduling in late May is not arranged at a fixed depletion of the available soil moisture, but at a fixed interval of one day. Therefore, irrigation takes place every day and the dose is 39.5 m³. At the early stages of the growing season, the irrigation interval ranges from 4 to 2 days.

[25 marks]

Question 4

Describe the parameters required and the evaluation criterias to be considered when using reclaimed wastewater for the treatment and reuse for irrigation purposes.

[25 marks]

Question 5

Outline the minimum engineering investigation requirements for a drip irrigation system to enable the successful planning, designing and implementation at the farm level.

[25 marks]

Question 6

Provide an example for the tenders for the supply of centre pivot pressurised irrigation equipment. [25 marks]

End of paper