BINDURA UNIVERSITY OF SCIENCE EDUCATION

FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE

BSc HONOURS DEGREE IN COMPUTER SCIENCE/SOFTWARE ENGINEERING/INFORMATION TECHNOLOGY

CS401/CSH219/SWE217: DESIGN AND ANALYSIS OF ALGORITHMS

DURATION: 2HOURS...30 MINUTES. TOTAL MARKS: ...100...

INSTRUCTIONS TO CANDIDATES

= MOV 20124

This paper consists of six(6) questions. Answer all questions.

Question 1

- a. Define complexity of an algorithm and give a detailed explanation of your understanding of Worst case complexity of an algorithm. [8]
- b. Show that:

i.
$$f(n) = n^2 + n$$
 is $O(n^3)$ [3]

ii.
$$f(n) = n^3 + 4 n^2$$
 is $\Omega(n^2)$ [4]

- c. For an O(N^k) algorithm, where k is a positive integer, an instance of size M takes 32 seconds to run. Suppose you run an instance of size 2M and find that it takes 512 seconds to run. What is the value of k? [4]
- d. Compute the time complexities for the following algorithms:
 - i. int function5(int A[], int B[], int n) {
 int i=0, j=0;
 while (i < n) {
 while (j < n && A[i] > B[j]) j++;
 i++;
 }
 return j;
 }

[3]

Question 2

Using the weighted graph in figure 1 below, list the edges in the order which they are added to the minimum spanning tree

Figure 1: Weighted graph

a.	After running Prim's algorithm starting from vertex A.	[9]
b.	After running Kruskal's algorithm.	[9]
c.	Draw the minimum spanning tree	[3]

Question 3

a. Using Dijkstra's algorithm, find a shortest path on the graph in figure 2 below from A and G, showing your work by completing Table 1, which shows the progression of the algorithm.

Figure 2: Shortest path graph

Table 1: Algorithm progression

Vertex	Order Visited?	Distance updates
	e.g 1, 2, 3	
Α		
В		
С		
D		
E		
F		
G		

b. State the shortest path and its length

[3]

Question 4

Give the algorithm for bubble sort and explain how its worst case complexity is determined.

[12]

Question 5

a. Give a formal definition of the string matching problem.

[3]

b. Explain with the aid of illustrations, how the Knuth-Morris-Pratt and boyer moore algorithms would search for the pattern P = ababac in the string T = ababbabaabbac. [15]

Question 6

A thief broke into a shop with a knapsack of capacity 8kg only to discover that there are four indivisible items at his disposal as in table 2 below:

Table 2: Shop items

Item	Value	Weight
1	15	1
2	10	5
3	9	3
4	5	4

- a. Use dynamic programming to find the maximum possible value of the thief's loot. [9]
- b. State the key feature of a problem that makes dynamic programming a good candidate for finding a solution? [2]

**********END OF PAPER*********