BINDURA UNIVERSITY OF SCIENCE EDUCATION

FACULTY OF ENGINEERING AND SCIENCES

DEPARTMENT OF ENGINEERING AND PHYSICS

ELECTRONIC ENGINEERING CIRCUITS

W. 1145053

EEE 1203

Examination Paper [3]

This examination paper consists of 8 pages

Time Allowed: 3 hours

Total Marks: 100

Special Requirements: Calculator, Graph Paper

Examiner's Name: S. Komichi

INSTRUCTIONS

- 1. Answer any FIVE questions only.
- 2. Each question carries 20 marks.
- 3. Show your steps clearly in any calculation.
- Start the answers for each question on a fresh page.

MARK ALLOCATION

QUESTION	MARKS
1.	20
2.	20
3.	20
4.	20
5.	20
6.	20
7.	20
TOTAL	100

Page 1 of 8

For the characteristics of Figure. 1.1 below;

- (a) Determine the ac resistance at $I_D=2$ mA.
- (b) Determine the ac resistance at I_D =25 mA.
- (c) Compare the results of parts (a) and (b) to the dc resistances at each current level.

[3], [3], [3]

Figure 1.1 Diode Characteristics

(d) (i) Determine I_D , V_{D2} , and Vo for the circuit of Figure 1.2 below;

Figure 1.2: Diode Circuit

Figure 1.3: Resistor Network

(d) (ii) Determine the total resistance for the network of Figure 1.3 above. [4]

Question 2

a) For the series diode reverse configuration of Figure 2.1, determine V_D , V_R , and I_D . [2], [4].

Figure 2.1: Series Diode

b) Determine Vo and ID for the series circuit of Figure 2.2 below.

Figure 2.2: Diodes Network

[3], [3]

- c) (i) Find the voltages $V_1,\,V_3,\,$ and V_{ab} for the network of Figure 2.3 below.
 - (ii) Calculate the source current Is.

Figure 2.3: Resistor Network

[3], [3]

Question 3

- a) The emf of a battery is 22.5V. How much charge flows if energy transferred is 90J? What is the current it the transfer time is 1.5 minutes? [5]
- b) Determine the resistance of a 30m copper wire with a diameter of 0.032cm and resistivity of 1.723 x 10-8. [5]
- c) What is the pd across a lamp that dissipates 1000J in 10 seconds if current is 0.4A? [5]
- d) Draw the common collector transistor configuration circuit clearly showing the current directions. [5]

a) Calculate the indicated currents (I_5 , I_s , I_6) and voltages (V_5 across R_5 , V_7 across) of Figure 4.1 below. [2], [2], [2], [2]

Figure 4.1: Resistor Networks

[5]

b) Determine the voltage Vo for the network of Figure 4.2 below.

Figure 4.2: Diode Network

c) Draw the common emitter transistor configuration circuit clearly showing the current directions. [5]

a) Determine I_s , I_{R2} , I_{R3} , I_{R4} , I_{R5} , I_{R6} and R_T for the circuit in Figure 5.1 below;

[2], [2], [1], [1], [1], [2]

Figure 5.1: Resistor Network

- b) For the emitter bias network of Figure 5.2 below, determine:
- (i) I_B.
- (ii) Ic.
- (iii) V_{CE}.
- (iv) Vc.
- (v) V_E.
- (vi) V_B.

[2], [1], [2], [2], [2], [1]

Figure 5.2: Emitter Stabilized Circuit

a) Determine the currents I_1 , I_2 , and I_{D2} for the network of Figure 6.1 below.

[3], [3], [3]

Figure 6.1: Resistor-Diode Network

- b) (i) For the network of Figure 6.2 below, determine the range of R_L and I_L that will result in V_{RL} being maintained at 10 V.
 - (ii) Determine the maximum and minimum wattage rating of the diode in Figure 6.2 below. [4], [4], [3]

Figure 6.2: Zener Regulator

a) For the Zener diode network of Figure 7.1 below, determine V_L , V_R , I_Z , and P_Z . Repeat with $R_L = 3$ k Ω . [5], [5]

Figure 7.1: Bias Network

Question 7

b) Determine the dc bias voltage V_{CE} and the current I_C for the voltage-divider configuration of Figure 7.2 below. [10]

Figure 7.2: Voltage Divider Circuit