BINDURA UNIVERSITY OF SCIENCE EDUCATION

FACULTY OF COMMERCE DEPARTMENT OF HUMAN RESOURCES MANAGEMENT HCM201/BS201 Quantitative Analysis for Business II (1) Duration: 3 HOURS

14 2024

INSTRUCTIONS FOR CANDIDATES

- 1. Answer any two questions from section A and any two questions from section B.
- 2 All questions carry equal marks.
- 3 No unauthorised items must be brought into the examination room.

MATERIALS ALLOWED

- 1. Scientific Calculator
- 2. Statistical Booklet
- 3. Graph Paper

SECTION A: Answer any two Questions

QUESTION 1

- a) Define the following terms as they are used in inferential statistics
- i) Type I Error and Type II error

(5)

ii) Level of Significance

(5)

b) The customer service department of a local gas utility would like to estimate the average length of time between the entry of the service request and the connection of service. A random sample of 15 houses was selected from the records available during the last year. The results in number of days are as follows:

										T : =	1		104	72	06
ı		70	00	127	70	103	117	126	86	99	114	72	104	/3	80
	114	78	90	13/	/0	105	111	120					.		

Required:

Find the 95% confidence interval estimate of the population waiting time

(15)

[25]

QUESTION 2

A manufacturer produces two models of racing bike B and C, each of which must be processed through two machine shops. Machine shop 1 is available for 120 hrs per month and machine shop 2 for 180 hrs per month. The manufacturer of each bike of type B takes 6 hrs in shop 1 and 3 hrs shop 2. The corresponding times for C are 4 and 10 hours respectively. If the profit is \$180 and \$220 per bike respectively.

Required:

- i) Formulate the linear programming model which maximizes profit. (5)
- ii) Solve this model graphically and determine how many bikes of type B and C are produced in order to maximize profit. (20)

[25]

QUESTION 3

A property analyst is examining the relationship between the City Councils valuation on residential property and the market value (selling prices) of properties. A random sample of 8 recent property transactions was examined. The data is as follows

City Council Valuation	12	45	32	50	28	56	18	40
City Council Valuation	12		142	310	196	364	116	260
Market Value	65	220	142	310	170		1.0_	

Required:

- i) Find the correlation co-efficient between council valuation and market value (20)
- ii) Comment on your results (5)

[25]

Section B: Answer any two Questions

QUESTION 4

Differentiate the following functions:

i)
$$y = e^{23x} + 2x$$
 (5)

ii)
$$y = \ln 20x + 30000$$
 (5)

$$iii) y = xe^{3x}$$
 (5)

b) The total revenue function of a firm is given as $TR = 26x - x^2$ and its total cost function as $TC = \frac{1}{x} + x^3 + \frac{1}{2}x^2 - 30x + 150$ where x is the output.

Required:

Estimate the maximum profit (15)

[25]

QUESTION 5

A hotels monthly occupancy rate (measured as a percentage of rooms available) is reported as follows:

Year	Occupancy %
	74
	82
l.	70
	90
l l	88
f	74
l l	64
i	69
i	58
1	
2006	65
	Year 2005 2005 2005 2005 2006 2006 2006 2006

Required

:5	Fit a least squares trend line to the hotel s occupancy rate.	(15)
1)	Estimate the hotel occupancy rate for July 2006 and August 2006.	(5)
ii)	Estimate the noter occupancy rate for July 2000 and 1208	(5)

iii) Comment on your findings. (5)

[25]

QUESTION 6

The following information relates to prices and quantities of blank video tapes sold between 2021 and 2022

		2021		2022		
Length of Video Tapes	Price \$	Quantity	Price \$	Quantity		
30 minutes 60 minutes 90 minutes	30 33 36	22 140 990	46 51.50 64.00	30 180 120		

Base year is 2021

Required:

i) Calculate the Lasperyres Quantity Index for 2022. (10)

ii) Calculate the Paasche Quantity Index for 2022 (10)

iii) Calculate the corresponding Fishers Index and Comment. (5)

[25]

End of Paper