Bindura University of Science Education

Faculty of Science

Department of Mathematics & Physics

Programmes: HBSc Ed (Mathematics)

Course: MT314: Mechanics

Duration: Three hours

Semester Examinations

Instructions to candidates

- (i) Answer all questions in Section A and two questions from Section B.
- (ii) Begin each question on a fresh page.

Section A [40 marks].

Answer all questions from this section being careful to number them A1 to A5.

A1. A particle moving in the x-y plane has a position vector given by $\vec{r} = \frac{3}{2}t^2i + \frac{2}{3}t^3j$ where

 \vec{r} is in meters and t is in seconds. Find:

(a). the velocity, \vec{v} ,

[2]

(b). the acceleration, \vec{a} , and

[2]

(c). the radius of curvature ρ , when t = 2s.

[4]

A2. (a). A 9 - kg block is moving to the right with a velocity of $0.6ms^{-1}$ when a force P is

applied to the body at time t = 0. The variation of P with time is such that during the interval 0 to 2s, P = 72N and during the interval 2s to 4s, P = 36N. The coefficient of friction $u_k = 0.3$.

Determine the velocity of the block when t = 4s

[10]

(b). Two forces \vec{P} and $-\vec{P}$ act through points with position vectors 2i + 3j and 3i - k respectively. Find the vector moment of this couple when $\vec{P} = 3i - 2k$. [5]

A3. Prove the change in linear momentum of a body in any given interval is equal to the geometric sum of the impulses of all the forces acting on the particle during that time [8] interval. A4.(a) Define the terms: [3] (i). virtual displacement [3] (ii), virtual work (b). State the necessary and sufficient condition for the equilibrium of a system of [3]

Section B. [60 marks]

Answer two questions from this section being careful to number them B5 to B7.

bodies subjected to ideal constraints.

- **B5.** (a). The y-coordinate of a particle is given by $y = 4t^2 3t$ where y is in metres and t is in seconds. Also the particle has an acceleration in the x – direction given by $a_x = 12 tm s^{-2}$. If the velocity of the particle in the x -direction is $4m s^{-1}$ when t=0, calculate, the magnitude of the velocity, \overrightarrow{v} , and the acceleration, \overrightarrow{a} , of the particle when t = 2s.
 - (b). Distinguish between rotational motion and translational motion of a rigid body. [4]
 - (c). Prove that in translational motion of a rigid body all particles of the body move along similar paths and have at any instant the same velocity and acceleration. [8]
 - (d). The equation of motion of an accelerated wheel is $\theta = \frac{9}{32}t^3$. Determine the linear velocity and acceleration of a point lying at a distance r = 0.8m from the axis of rotation at the instant when its tangential and normal accelerations are equal.

[8]

[10]

R6. ((a).	Define the	term	angular	momentum.
.,,	(** / *	DOTHER CITE	CALLE	41184144	***************************************

[3]

[13]

- (b). (i). Prove that the moment about a fixed point O of all the forces acting on a rigid body of mass M is equal to the time rate of change of angular momentum of M about O.
 [8]
- (ii). A particle with a mass of 4kg has position vector given by $\vec{r} = 3t^2 \, i 2t \, j 3t \, k$, where \vec{r} is in metres and t is in seconds. For t = 3s, determine the magnitude of the angular momentum of the particle and the moment of all the forces acting on the particle both about the origin of coordinates.
- (c). Prove that the path followed by a particle launched at angle α to the horizontal is parabolic.
- B7 (a). State and prove the parallel axis theorem.
 - (b). Prove that the loss in kinetic energy of a system of bodies colliding in aperfectly inelastic collision is equal to the kinetic energy the system would havehad if its bodies had moved with lost velocities. [10]
- (c). The motion of a body in polar coordinates is given by: $\theta = 0.2t + 0.02t^3$ and $r = 0.2 + 0.04t^2$ where θ is in radians and r is in meters. Calculate the magnitude of the velocity at the instant when t = 3s.

END OF PAPER