BINDURA UNIVERSITY OF SCIENCE EDUCATION

FACULTY OF SCIENCE

CHEMISTRY DEPARTMENT

MATE STAN

BScED and CHEMICAL TECHNOLOGY

COURSE: CH101:

PHYSICAL CHEMISTRY I

TIME:

2 HOURS

1. (a) State the first law of thermodynamics.

[2 marks]

- (b) For silver, $C_p = 23.43 + 0.00628T(J/Kmol)$ Calculate ΔH if 3 moles of silver are raised from 25 °C to the melting pint, 961 °C, under 1 atm pressure. [5 marks]
- (c) State the phase rule, and define all terms in this rule.

[4 marks]

(d) Consider the equilibrium NO₂(g) ↔ NO(g) + 1/2O₂(g). One mole of NO₂(g) is placed in a vessel and allowed to come to equilibrium at a total pressure of 1 bar. An analysis of the contents of the vessel gives the following results:

T	700 K	800 F		
$\frac{P_{NO}}{P_{NO_2}}$	0.872	2.50		

i. Calculate K_P at 700 and 800 K.

[4 marks]

ii. Calculate $\Delta G_{reaction}^{\circ}$ and $\Delta H_{reaction}^{\circ}$ for this reaction at 298.15 K. Assume that $\Delta H_{reaction}^{\circ}$ is independent of temperature. [5 marks]

SECTION A: Answer TWO (2) questions from this section.

- 2. (a) A chemical reaction occurs under isochoric conditions, in a container with diathermic walls. Will the temperature of the surroundings increase, decrease, or remain same in this process? Explain. [4 marks]
 - (b) 3.00 moles of an ideal gas at 27.0°C expands isothermally from an initial volume of 20.0 dm³ to a final volume of 60.0 dm³. Calculate w for this process (i) for expansion against a constant external pressure of 1.00 x 10⁵ Pa, and (ii) for a reversible expansion. [8 marks]

(c) Calculate the standard enthalpy of formation of $FeS_2(s)$ at 300°C from the data below at 25°C and from the information that for the reaction

$$2\text{FeS}_{2(s)} + \frac{11}{2}\text{O}_{2(g)} \rightarrow \text{Fe}_2\text{O}_{3(s)} + 4 \text{SO}_{2(g)}, \qquad \Delta H_{reaction}^{\circ} = 1655 \text{ kJ mol}^{-1}.$$

Assume that the heat capacities are independent of temperature.

Substance	Fe(s)	$FeS_2(s)$	$Fe_2O_3(s)$	S(rhombic)	$SO_2(g)$
ΔH_f° (kJ mol ⁻¹)			-824.2		-296.81
$C_{P,m}/R$	3.02	7.48		2.72	

[6 marks]

(e) Under what conditions are ΔH and ΔU for a reaction involving gases and/or liquids or solids identical? [2 marks]

3. (a) From the following data at 25°C

$$\Delta H_{reaction}^{\circ} (kJ \text{ mol}^{-1})$$
Fe₂O₃(s) + 3C(graphite) \rightarrow 2Fe(s) + 3CO(g) +492.6
· FeO(s) + C(graphite) \rightarrow Fe(s) + CO(g) +155.8
C(graphite) + O₂(g) \rightarrow CO₂(g) -393.51
CO(g) + ½ O₂(g) \rightarrow CO₂(g) -282.98

Calculate the standard enthalpy of formation of FeO(s) and of $Fe_2O_3(s)$.

[6 marks]

(b) One mole of an ideal gas, for which $C_{V,m} = 3/2 R$, initially at 20.0°C and 1.00 x 10^6 Pa undergoes a two stage transformation. For each of the stages described below, calculate the final pressure, as well as q, w, ΔU and ΔH .

(i) The gas is expanded isothermally and reversibly until the volume doubles. [4 marks]

(ii) Beginning at the end of the first stage, the temperature is raised to 80.0°C at constant volume. [6 marks]

(iii) Also calculate q, w, ΔU and ΔH for the complete process. [4 marks]

4. (a) Classify the following processes as spontaneous or not spontaneous and explain your answer.

(i) The reversible isothermal expansion of an ideal gas.

(ii) The vaporization of superheated water at 102°C and 1 bar.

(iii) The constant pressure melting of ice at its normal freezing point by the addition of an infinitesimal quantity of heat.

(iv) The adiabatic expansion of a gas into a vacuum.

[8 marks]

- (b) (i) Under what conditions is $dA \le 0$ a condition that defines the spontaneity of a process? [2 marks]
 - (ii) Under what conditions is $dG \le 0$ a condition that defines the spontaneity of a process? [2 marks]
- (c) Consider the equilibrium C₂H₆(g) ↔ C₂H₄(g) + H₂(g). At 1000 K and a constant total pressure of 1 bar, C₂H₆(g) is introduced into a reaction vessel. At equilibrium, the composition of the mixture in mole percent is H₂(g): 26%, C₂H₄(g): 26%, and C₂H₆(g): 48%.
 - (i) Calculate K_P at 1000 K. [3 marks]
 - (ii) If $\Delta H_{reaction}^{o} = 137.0 \text{ kJ mol}^{-1}$, calculate the value of K_P at 298.15K. [3 marks]
 - (iii) Calculate $\Delta G_{reaction}^{o}$ for this reaction at 298.15 K. [2 marks] a) $C_2H_6(g) \rightarrow C_2H_4(g) + H_2(g)$

SECTION B: Answer TWO (2) questions from this section.

5. (a) State the third law of thermodynamics.

[2 marks]

- (b) A sealed flask with a capacity of 1.00 dm³ contains 5.00 g of ethane. The flask is so weak that it will burst if the pressure exceeds 1.00 × 10⁶ Pa. At what temperature will the pressure of the gas exceed the bursting temperature? [6 marks]
- (c) A cup of water at 278 K (the system) is placed in a microwave oven and the oven is turned on for one minute, during which it begins to boil.

 Which of q, w, and ΔU are positive, negative or zero? [6 marks]
- (d) What is wrong with the following statement?: Burns caused by steam at 100°C can be more severe than those caused by water at 100°C because steam contains more heat than water. Rewrite the sentence to convey the same information in a correct way. [6 marks]
- 6. (a) 3.00 moles of a gas are compressed isothermally from 60.0 L to 20.0 L using a constant external pressure of 5.00 atm. Calculate q, w, ΔU, and ΔH. [6 marks]
 - One mole of an ideal gas for which $C_{V,m} = 20.8 \text{ J K}^{-1} \text{ mol}^{-1}$ is heated from an initial temperature of 0°C to a final temperature of 275°C at constant volume. Calculate q, w, ΔU and ΔH for this process. [10 marks]
- 7. (c) What is the relationship between the K_P for the two reactions

 $3/2H_2 + 1/2N_2 \rightarrow NH_3$ and $3H_2 + N_2 \rightarrow 2NH_3$?[4 marks] (a) An electric motor produces 56 kJ of energy each second as mechanical work and

Examp.A

looses 2 kJ as heat to the surroundings, What is the change in the internal energy of the motor each second?

[4 marks]

- (b) Calculate the work done when 50 g of iron reacts with hydrochloric acid to produce FeCl₂(aq) and hydrogen in:
 - (a) a closed vessel of fixed volume,
 - (b) an open beaker at 25°C.

[6 marks]

(c) Calculate the solar energy required to produce 5255 g of C₆H₁₂O₆ given the thermochemical equation for photosynthesis:

 $6H_2O(l) + 6CO_2(g) \rightarrow C_6H_{12}O_6(s) + 6O_2(g)$

 $\Delta H = +2803kJ/mol$

[5 marks]

(d) What mass of iron must be in a hot pack to provide 335 kJ of heat when the iron reacts with oxygen and is converted to iron (III) oxide according to the following thermochemical equation?

2 Fe(s) + 1.5 $O_2(g) \rightarrow Fe_2O_3(s)$;

 $\Delta H^o = -824.2 \text{ kJ/mol}$

[5 marks]

END OF QUESTION PAPER