BINDURA UNIVERSITY OF SCIENCE EDUCATION FACULTY OF SCIENCE AND ENGINEERING DEPARTMENT OF COMPUTER SCIENCE BSc HONS DEGREE IN COMPUTER SCIENCE CS405: DIGITAL SIGNAL PROCESSING

DURATION: 2 HOURS 30 MINUTES

TOTAL MARKS: 100

INSTRUCTIONS TO CANDIDATES

MAR 2024

The paper consists of $\underline{\text{five (5)}}$ questions, candidates are expected to answer all questions.

Question 1

a. Describe the components of a Digital Signal Processor.

[10]

- Applications of digital signal processing (DSP) may be divided into two categories: 'real time' and 'non real time'. Explain these terms and give one (1) example in each category.
- c. Describe the use of Nyquist-Shannon sampling theorem in sampling of analog signals before digitization. [4]

Question 2

- a. An analogue signal $x_a(t)$ is band-limited to a frequency range below F_{Hz} . This signal is sampled at $f_{S Hz}$ to obtain the discrete time signal $\{x[n]\}$. Explain how it is possible, in principle, to reconstruct an exact replica of $x_a(t)$ from $\{x[n]\}$ provided $f_{S} > 2F$.
- b. Explain each of the following properties of discrete time signal processing systems:

1.	Linearity	[2]
ii.	Time-invariance	[2]
iii.	Causality	[2]
iv.	Stability	[2]

c.	Explain why	analogue	signals	are	generally	low-pass	filtered	before	they	are
	converted to	digital fo	rm.						[4	1]

Question 3

- a. Outline <u>three (3)</u> advantages and <u>three (3)</u> disadvantages of infinite impulse-response (IIR) digital filters as compared with finite impulse-response (FIR) types.
- b. Produce the block diagram or signal flow representation of the discrete time system described by y[n] = x[n] + 0.5x[n-1] 0.5x[n-2]. [8]
- c. Consider the impulse response of a system, which is linear and time-invariant: $h[n] = 2^n u[n+1]$.

Determine if this system is:

Question 4

- a. Give any <u>two</u> applications of DTF in signal processing. [2]
- b. Compute the 4-point DFT for the sequence $x[n] = \{1, 0, 1, 0\}$. [10]
- c. Find the Z- transform of the sequences $x[n] = 2\delta[n] + 3\delta[n-1] + 5\delta[n-2]$. [8]

Question 5

a. Determine the inverse Z-transform of the function:

$$Y(z) = \frac{z-1}{(z-2)(z-3)}$$
 [10]

- b. Explain the term 'quantisation noise'. [4]
- c. Clipping is a form of distortion that limits a signal once it exceeds a threshold.

 Describe how clipping can be avoided in signal processing.

 [4]
- d. Explain the round off effect in digital filters. [2]

SOME COMMON z-TRANSFORM PAIRS							
Transform pair Sign	al Transform	ROC					
1. δ[n]	1	All z					
2. u[n]	$\frac{1}{1-z^{-1}}$	z > 1					
3. $u[-n-1]$	$\frac{1}{1-z^{-1}}$	2 < 1					
4. $\delta[n-m]$	z~m	All z except 0 (if $m > 0$) or ∞ (if $m < 0$)					
5. α ⁿ u[n]	$\frac{1}{1-\alpha z^{-1}}$	$ z > \alpha $					
$6\alpha^n u[-n-1]$	$\frac{1}{1-\alpha z^{-1}}$	$ z < \alpha $.					
7. $n\alpha^n u[n]$	$\frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2}$	2 > \(\alpha \)					
$8n\alpha^n u[-n-1]$	$\frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2}$	$ z < \alpha $					
9. $[\cos \Omega_0 n]u[n]$	$\frac{1 - [\cos \Omega_0]z^{-1}}{1 - [2\cos \Omega_0]z^{-1} + z^{-2}}$	z > 1					
10. [$\sin \Omega_0 n$] $u[n]$	$\frac{[\sin \Omega_0]z^{-1}}{1-[2\cos \Omega_0]z^{-1}+z^{-2}}$	z > 1					
11. $[r^n \cos \Omega_0 n]u[n]$	$\frac{1 - [r\cos\Omega_0]z^{-1}}{1 - [2r\cos\Omega_0]z^{-1} + r^2z^{-2}}$	z > r					
12. $[r^n \sin \Omega_0 n]u[n]$	$\frac{[r \sin \Omega_0]z^{-1}}{1 - [2r \cos \Omega_0]z^{-1} + r^2z^{-2}}$	z > r					

**** END OF PAPER****