BINDURA UNIVERSITY OF SCIENCE EDUCATION

FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT: ENGINEERING AND PHYSICS

PROGRAMME BSc HONOURS DEGREE IN COMPUTER SCIENCE / BSc EDUCATION HONOURS DEGREE IN COMPUTER SCIENCE

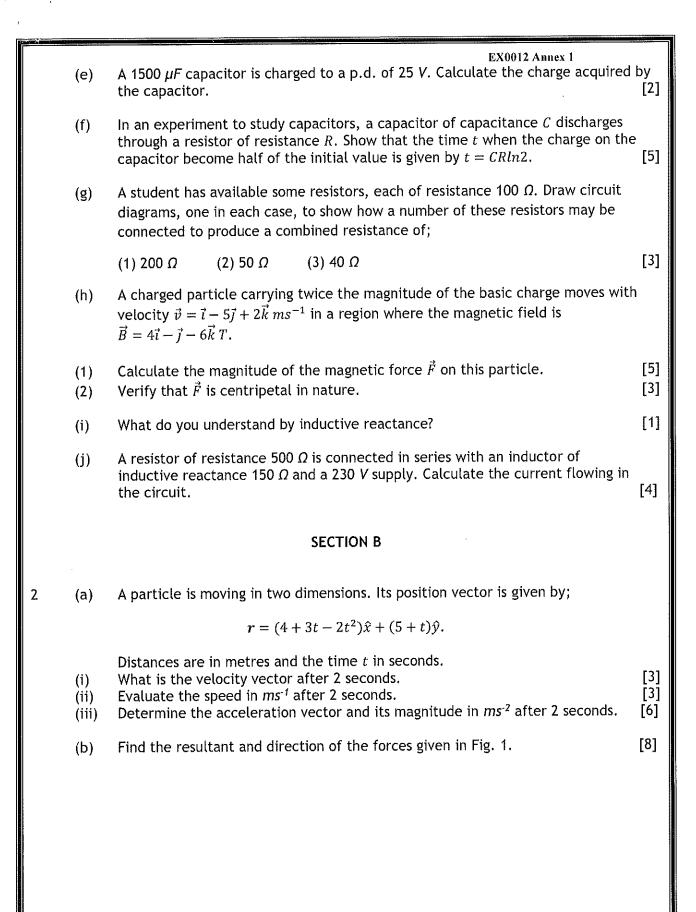
COURSE CODE PH107 (2): PHYSICS FOR COMPUTER SCIENCE

DURATION: 3 HOURS

TOTAL MARKS: 100

JUN 2025

INSTRUCTIONS TO CANDIDATES


Answer question one in Section A and any three questions from Section B. Section A carries 40 marks and each question in Section B carries 20 marks.

Physical constants

Electronic charge, e = 1.6 x 10^{-19} C Boltzmann's constant, k = 1.38 x 10^{-23} JK⁻¹ Mass of an electron, m_e = 9.11 x 10^{-31} kg Permittivity of free space, ϵ_o = 8.85 x 10^{-12} Fm⁻¹ Permeability of free space, μ_o = 4π x 10^{-7} Hm⁻¹ Velocity of light in vacuum, c = 3.00 x 10^8 ms⁻¹ Universal Gravitational Constant, G = 6.7 x 10^{-11} Nm²kg⁻² Acceleration due to gravity, g = 9.81 ms⁻² Electric potential at infinity, V_{∞} = 0

SECTION A

- 1 (a) It is given that \vec{L} and \vec{M} are such that $\vec{L} = \vec{\imath} \vec{3j} + 5\vec{k}$ and $\vec{M} = 3\vec{\imath} + 3\vec{\jmath} 4\vec{k}$. Find $\vec{L} \times \vec{M}$ and verify that this vector is orthogonal to both \vec{L} and \vec{M} .
 - (b) A van travelling at a velocity of 10 ms^{-1} accelerates uniformly for 5 s at a rate of 2.5 ms^{-2} . Calculate the distance travelled during this time. [3]
 - (c) A positive charge of $+40 \,\mu C$ is fixed at the origin and another charge of $-20 \,\mu C$ is fixed to the x-axis at $x=2 \,m$. Find along the x-axis only one possible location where the electric field due to the two charges is zero. [6]
 - (d) If 200 J is required to carry a 10 C charge from point P to point Q what is the potential difference between the two points? [2]

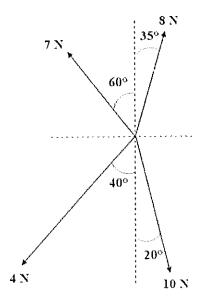


Fig. 1

Three point charges are located at the corners of an equilateral triangle as shown in Fig. 2.

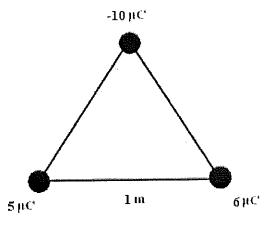


Fig. 2

(a) Calculate the electric potential at the centre of the triangle.

[18]

(b) How much work is required to move a charge of 15 μ C from infinity to the centre of the triangle? [2]

4 Fig. 3 shows a network containing two cells and some resistors.

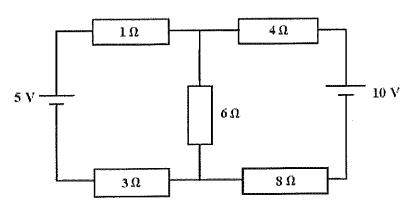


Fig. 3

(a) Use Kirchhoff's rules to determine the value of the current through the 6 Ω resistor.

[18]

(b) Hence calculate the potential difference across the 6 Ω resistor.

[2]

5 Fig. 4 shows a network of capacitors connected to a 20 V source.

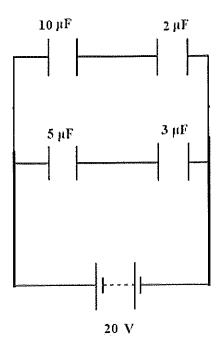


Fig. 4

Page **4** of **5**

EX0012 Annex 1

Calculate

- (a)the equivalent capacitance of the capacitors.[5](b)the charge on each capacitor.[5](c)the potential difference across each capacitor.[5](d)the energy stored in each capacitor.[5]
- A resistor of resistance 60 Ω and a capacitor of capacitive reactance 80 Ω are connected in series with a 60 V a.c. generator.
 - (a) Draw a circuit diagram showing how the components are connected. [5] (b) Draw the phasor diagram for V_R and V_C . [4]
 - (c) Calculate the following.
 - (i)impedance[3](ii)total current[2](iii)potential drop across the resistor[2](iv)potential drop across the capacitor[2](v)the phase angle[2]