BINDURA UNIVERSITY OF SCIENCE EDUCATION

MT015

MATHEMATICS BRIDGING COURSE

Time: $2\frac{1}{2}$ Hours

Candidates should attempt six questions. Marks will be allocated as indicated.

Each question should start on a fresh page.

QUESTION 1 [20 MARKS]

- (a) Solve the equation $\frac{a-2}{5} = 1\frac{1}{2}$. [3]
- (b) Solve the inequality $21 < 4n 3 \le 27$. [3]
- (c) Factorise completely (i) $18t^2 2$. [3]
 - (ii) $10m^2 tr 2mt + 5mr$. [2]
- (d) Given that $T = g + \sqrt{n^3 m}$.
 - (i) Find T when g = -4, n = 3 and m = -9. [2]
 - (ii) Make m the subject of the formula. [3]
- (e) Solve the equation $\frac{4-x}{x} = \frac{x}{2}$. [4]

QUESTION 2 [20 MARKS]

(a) Simplify the following expressions

(i)
$$P^0 \times P^4 \times P^{-3}$$
 [2]

(ii)
$$x^{a+b} \times x^{3a+b}$$
 [2]

(iii)
$$18x^{-5} \div 9x^4$$
 [2]

(b) Given that $\log 2 = 0.3010$ and $\log 3 = 0.4771$

Calculate

- (i) log 6 [2]
- (ii) log 1.5 [3]
- (iii) $\log \sqrt{2}$
- (c) In the diagram ABCD is a circle center O. Arc $AD = arc\ DC$, $D\widehat{A}\ O = 55^{\circ}$ and

AOB is a straight line

Calculate

(i)
$$B\widehat{C}D$$
 [2]

(ii)
$$A\widehat{C}B$$
 [2]

(iii)
$$D\widehat{A}C$$
 [2]

QUESTION 3 [20 MARKS]

(a) The diagram shows a rectangle and a right-angled triangle. The lengths of the sides of the rectangle M are (x + 4) cm and (7 - x) cm. The lengths of two of the sides of the triangle N are x cm and (3 x + 1) cm as shown

Write-down an expression in terms of x, for the area of

(i) rectangle M

- (b) Given that the area of rectangle M is twice the area of triangle N, form an equation in x and shows that it reduces to $2x^2 x 14 = 0$. [3]
- (c) Solve the equation in (b), giving your answers correct to 3 significant figures. [5]

- (d) Write down the dimensions of rectangle-M correct to the nearest millimetre.
- (e) Three points L, M and A are on horizontal ground with M due east of L. The bearing of A from L is 048° and from M is 325°. LA= 11 km and MA= 9km. Calculate

QUESTION 4 [20 MARKS]

- (a) Express
 - (i) $\frac{1}{m} \frac{3}{2-5m}$ as a single fraction in its lowest terms. [2]

(ii)
$$\frac{b}{a^2-ab} + \frac{a}{b^2-ab}$$
 as a single fraction in its lowest terms. [5]

(b) Factorise completely ax - a + x - 1. [1]

(c) If
$$x = \frac{3m-5}{3m+5}$$
, express $\frac{x-1}{x+1}$ in terms of m. [4]

- (d) Expand (g 2h + 2)(g h) giving your answer in its simplest form. [2]
- (e) In a Mathematics bridging course test, x students got less than 47 marks, 2x students got more than 45 marks while 6 students got exactly 46 marks. Show this information on a Venn diagram. There were 30 students in the class, find the value of x. [6]

QUESTION 5 [20 MARKS]

- (a) To start a new bus company, a businessman needs at least 5 buses and 10 minibuses. He does not want to have more than 30 vehicles altogether. A bus takes up 3 units of garage space, a minibus takes up 1 unit of garage space and there are only 54 units of garage space available. If x and y are the numbers of buses and minibuses respectively,
 - (i) Write down four inequalities which represent the restrictions on the businessman
 - (ii) Draw a graph which shows a region representing possible values of x and y. [5]
- (b) If $M = \begin{bmatrix} 2 & 3 \\ -4 & 1 \end{bmatrix}$. Find M^{-1} , the inverse matrix of **M** and hence solve the simultaneous equations

$$2x + 3y = 4...$$
 (i)
 $-4x + y = 6...$ (ii) [5]

[2]

(c) In the diagram below, $\overrightarrow{OA} = a$, $\overrightarrow{OB} = b$. The point C is such that AC = 3CB and the point D is such that OD = DA.

- (i) Express in terms of \boldsymbol{a} and/ or \boldsymbol{b} the vectors \overrightarrow{AB} , \overrightarrow{OD} , \overrightarrow{AC} , and \overrightarrow{OC} .
- (ii) OC and BD meet at $\overrightarrow{BX} = \overrightarrow{kBD}$, express BX in terms of a, b, and k, hence show that $\overrightarrow{OX} = \frac{1}{2}ka + (1-k)b$.
- (iii) Given also that $\overrightarrow{OX} = h\overrightarrow{OC}$, express OX in terms of a, b, and b.
- (iv) Using these two expressions for \overrightarrow{OX} , find the values of h and k.
- (v) Find the numerical values of the ratio BX: XD. [10]

QUESTION 6 [20 MARKS]

- (a) When a biased coin is tossed, the probability of getting a head is 0.6. For this coin find
 - (i) the probability of getting a tail if it is tossed once.

[1]

(ii) The probability of getting at least one head if it tossed twice,

[2]

(iii) the expected number of heads if it is tossed 50 times.

[2]

(b) The following entries shows the number of bicycles sold per day in nine days;

6; 10; 12; 9 14; 10; 15; 10; 12. Find;

- (i) median
- (ii) the next entry if the new mean of the tenth day is 12.

[3]

(c) Answer the whole of this question on a sheet of graph paper.

The amount of maize sold to the grain marketing board by small scale farmers in the Hurudza area is shown in the table below.

Mass (t)	$0 < x \le 6$	$6 < x \le 10$	$10 < x \le 15$	$15 < x \le 20$	$20 < x \le 26$	$26 < x \le 30$
Number	0	3	7	5	3	1
of farmers					***************************************	

- (i) Using a horizontal scale of 2cm to represent 5 tonnes on the horizontal scale axis and a vertical scale of 2cm to represent 5 farmers draw a smooth cumulative frequency curve to illustrate this information. use the graph to estimate
 - (a) the median for this distribution.
 - (b) The number of farmers who sold 24 tonnes or less.
- (ii) A farmer is chosen at random. Calculate the probability that he sold 10 tonnes or less. [2]
- (iii) Two farmers are chosen at random. Calculate the probability that each farmer sold more than 10 tonnes but less than or equal to 20 tonnes. [4]

Question 7

- (a) On the plane paper provided, use ruler and compasses only to construct a 30° angle.

 Show all your constructing lines.

 [4]
- (b) On the plane paper provided, use ruler and compasses only to construct an equilateral triangle with side length 6cm. [6]
- (c) The image of P under a 2×2 matrix $N = \begin{bmatrix} 5 & 3 \\ 3 & 2 \end{bmatrix}$ is $P_1(-4; 7)$. Find P. [4]
- (d) The matrix M is given by $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$.
 - (i) Interpret geometrically the transformation represented by matrix M. [3]
 - (ii) Triangle ABC has vertices A(-2; 1), B(0; 4) and C(8; 0). Find the vertices of triangle $A^1B^1C^1$, the image of triangle ABC under M. [3]

END OF EXAMINATION

[6]