BINDURA UNIVERSITY OF SCIENCE EDUCATION

CHEMISTRY DEPARTMENT

DIPLOMA IN SCIENCE EDUCATION

DCH007/DC005

ANALYTICAL CHEMISTRY

TIME:

2 HOURS

Answer **QUESTION ONE 1** and **FOUR (4) OTHERS.** Each question carries **20 marks**.

1. The data below shows the masses of seven Zimbabwean \$ 1 bond coins.

Coin	Mass
	(g)
1	3.081
2	3.094
3	3.107
4	3.056
5	3.112
6	3.174
7	3.198

(a) Calculate the following:

(i)	the mean mass.	[2 marks]

(ii) the standard deviation. [3 marks]

(iii) the variance. [3 marks]

(iv) the coefficient of variation. [2 marks]

(b) Describe in detail the steps taken when conducting a mass spectrometric analysis.[4 marks]

(c) What is the principle behind chromatography? [3 marks]

(d) What are the advantages of using HPLC over GLC? [3 marks]

SECTION A: Answer TWO (2) questions from this section.

2.

- (a) What do you understand by the term relative atomic mass? [2 marks]
- (b) Outline, with the aid of a labelled diagram, the use of the mass spectrometer in the determination of relative atomic masses. [7 marks]
- (c) Naturally occurring gallium, Ga, is a mixture of two isotopes, gallium-69 and gallium-71. Use this information, together with the relative atomic mass of Gallium from the Data Booklet, to calculate the percentage abundance of each isotope.

[3 marks]

- (d) The mass spectrum of chlorine, $Cl_{2(g)}$, consists of peaks at m/e values of 70, 72 and 74 of relative abundance 9:6:1. Explain these observations as fully as you can. [8 marks]
- 3. The diagram below shows the mass spectrum of methanol.

(a) Identify the fragments giving rise to the major peaks in the spectrum.

[6 marks]

(b) An analysis of the composition of a newly discovered element, Z, showed the following results.

Isotope	Relative abundance (%)
²⁰ Z	90.91
²¹ Z	0.16
²² Z	8.93

On the mass spectrum of Z, the peak due to isotope ^{21}Z had a peak height of 20 mm.

(i) Deduce the heights of the other two peaks. [2 marks]

(ii) Draw a sketch of a mass spectrum of Z using these heights.

[4 marks]

(iii) Calculate the relative atomic mass of Z.

[4 marks]

(c) State any two common applications of mass spectrometry.

[4 marks]

- **4.** (a) Name any 3 essential components of a mass spectrometer and give a function of each. [6 marks]
 - (b) What are the advantages of mass spectrometry as an analytical technique? [4 marks]
 - (c) Explain how separation of components is achieved in chromatography
 [2 marks]
 - (d) With the aid of a fully labelled diagram, describe the essential steps involved in performing thin layer chromatography. [8 marks]

SECTION B: Answer TWO (2) questions from this section.

5. (a) Describe the steps followed in performing an analytical procedure. [9 marks]

(b) Outline the principle of solvent extraction.

[4 marks]

(c) What are the factors that affect the efficiency of solvent extraction?

[3 marks]

(d) State the advantages of solid phase extraction over liquid-liquid extractions. [4 marks] **6. (a)** A mixture of alanine, aspartic acid and serine was analysed by thin layer chromatography (TLC), with SiO₂ as a stationary phase. The TLC mobile phase was 95% ethanol and 5% H₂O.

Alanine H₂NCH(CH₃)CO₂H Aspartic acid H₂NCH(CH₂CO₂H)CO₂H Serine H₂NCH(CH₂OH)CO₂H

- (i) Deduce with reasons the amino acid with
 - 1. the highest Rf value

[3 marks]

2. the lowest Rf value

[3 marks]

(ii) The stationary phase, adsorbed SiO₂, was mixed with silver ions. Ag⁺.

State and explain how the magnitudes of the Rf values were affected by the Ag⁺ ions. [4 marks]

- (b) Draw a labelled TLC chromatogram that can be used to show that all the three amino acids were present in the analysed mixture. [4 marks]
- (c) State two other applications of TLC.

[2x2 marks]

(d) Give two advantages of TLC over paper chromatography?

[2 marks]

- 7. (a) Distinguish between:
 - (i) Analyte and matrix.

[3 marks]

(ii) Determinate error and indeterminate error.

[3 marks]

(iii) Qualitative and quantitative analysis.

[3 marks]

(b) What do you understand by the term 'partition coefficient?

[2 marks]

(c) 20 g of an organic compound is dissolved in 100 cm³ of water. If the organic compound is extracted with ether, show that the quantity extracted by two 25 cm³ portions of ether portions is larger than that extracted by one 50 cm³ portion.

(Partition coefficient = 4)

[9 marks]

END OF QUESTION PAPER