BINDURA UNIVERSITY OF SCIENCE EDUCATION

FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF RNGINEERING AND PHYSICS

Bachelor of Science Honours Degree in Electronic Engineering

EEE2202:

ELECTRONIC DRIVES

Duration: 3 hours

Total marks: 100

INSTRUCTIONS

This paper contains seven questions each carrying 20 marks.

Answer any **FIVE** questions.

Question 1

a)	(i) Highlight any two typical applications of the Schottky diode.			
/		[2]		
(ii) St	ate any two advantages of the Schottky diode.	[2]		
53	State the four types of transistor power losses, hence give a bription of the losses.	ief [8]		
c) contr	Highlight any five different turn ON methods for the Silicon olled rectifier.	[5]		
d) moto	State three advantages associated with the use of the stepper r.	[3]		
Ques	tion 2			
	With the aid of a circuit diagram and supporting equations, ibe the principle of operation of the Silicon Controlled Rectifie wave power control.	r [8]		
b)	Briefly describe how thyristor protection is achieved.	[5]		
c) of the	With the aid of a circuit diagram, briefly describe the operation e crowbar protection circuit.	n [7]		
Question 3				
a) equiv	With the aid of the Insulated-Gate Bipolar Transistor (IGBT) valent circuit diagram, describe its principle of operation.	[8]		
b)	(i) State the two classes of IGBTs.	[2]		
c) MOSF	Explain why the PT IGBTs cannot be as easily paralleled as ETs, while the NPT IGBTs can be paralleled.	[4]		
d) syste	Briefly describe the three basic elements of the stepper motor m.	[6]		

Question 4

a) (i) Describe the purpose saved by the servomotor.	[2]			
(ii) Hence highlight the components that constitute the servomotor. [3]				
b) (i) Draw the block diagram of the servo mechanism. [[5]			
(ii) State the fundamental characteristics to be sought in any servo motor. [2]				
c) (i) Highlight any four advantages of DC servomotor. [[4]			
(ii) Give any four typical applications of the DC servomotor.	[4]			
Question 5				
a) With the aid of a tree diagram, highlight the classifications of the stepper motor.	he [5]			
b) With the aid of a diagram/s, explain how the Linear Variable Differential Transformer (LVDT) is used to measure displacement. [[5]			
c) (i) Describe regenerative braking.	[4]			
(ii) Hence, highlight any three advantages of regenerative braking.	[3]			
d) In power electronic systems with rectifier front-ends, describe with the aid of diagram, a means to avoid transient inrush currents at starting. [3]				

Question 6

a) With the aid of a block diagram, highlight the stages for an instrumentation measuring system.

[4]

b) With the aid of a circuit diagram and supporting equations, describe the operation of the stepdown converter.

[7]

c) Describe the operation of the AC Solid State Relay Circuit below.

[5]

d) A current is, of square waveform is shown in Figure below. Hint,

From Fourier analysis, $i_s(t)$ can be expressed as

$$i_s = \frac{4}{\pi}I(\sin\omega_1 t + \frac{1}{3}\sin 3\omega_1 t + \frac{1}{5}\sin 5\omega_1 t + \frac{1}{7}\sin 7\omega_1 t + \dots)$$

- (i) Calculate and plot its fundamental frequency component and its distortion component.
- (ii) What is the %THD associated with this waveform?

[3] [1] The fundamental frequency component and the distortion component are plotted in Figure below.

Question 7

a)	Briefly describe the, Deleterious Effects of Harmonic Distortion	on
and a	a Poor Power Factor.	[6]
6)	With the aid of waveforms and circuit diagram, describe the tiple of operation of the flyback converter.	[10]
0.00	Describe four characteristics required for the selection of a	[4]