BINDURA UNIVERSITY OF SCIENCE EDUCATION

FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT: ENGINEERING AND PHYSICS

PROGRAMME BSc HONOURS DEGREE IN COMPUTER SCIENCE / BSc EDUCATION HONOURS DEGREE IN COMPUTER SCIENCE

COURSE CODE PH107 (1): PHYSICS FOR COMPUTER SCIENCE

DURATION: 3 HOURS TOTAL MARKS: 100

INSTRUCTIONS TO CANDIDATES

Answer question one in Section A and any three questions from Section B. Section A carries 40 marks and each question in Section B carries 20 marks.

Physical constants

Electronic charge, $e=1.6\times 10^{-19}~C$ Boltzmann's constant, $k=1.38\times 10^{-23}~JK^{-1}$ Mass of an electron, $m_e=9.11\times 10^{-31}~kg$ Permittivity of free space, $\epsilon_0=8.85\times 10^{-12}~Fm^{-1}$ Permeability of free space, $\mu_0=4\pi\times 10^{-7}~Hm^{-1}$ Velocity of light in vacuum, $c=3.00\times 10^8~ms^{-1}$ Universal Gravitational Constant, $G=6.7\times 10^{-11}~Nm^2kg^{-2}$ Acceleration due to gravity, $g=9.81~ms^{-2}$ Electric potential at infinity, $V_{\infty}=0$

SECTION A

- 1 (a) Find the angle between the vectors $\vec{M} = (3, 2, -4)$ and $\vec{N} = (-1, -5, 0)$. [4] (b) What is the difference between a dot product and a cross product of vectors? [2] (c) Calculate the cross product of the vectors $\vec{R} = (0, -3, 2)$ and $\vec{S} = (-4, 5, 1)$. [5]
 - (d) Verify that the cross product calculated in (c) is orthogonal to both \vec{R} and \vec{S} . [2]
 - (e) An object moves at 10 ms⁻¹ around a circular path of radius 20 m. Determine the centripetal force. [3]
 - (f) Calculate the magnitude of the electric field at a point $5 \times 10^{-7} m$ from a proton. [3]

- (g) A 470 μ F capacitor is charged to a p.d. of 20 V. Calculate the charge acquired by the capacitor. [2]
- (h) Suppose that you have some resistors, each of resistance 1 K Ω . Draw circuit diagrams, one in each case, to show how a number of these resistors may be connected to produce a combined resistance of;
 - (1) $2 \text{ K}\Omega$ (2) $0.5 \text{ K}\Omega$ (3) $0.4 \text{ K}\Omega$ [6]
- (i) A charged particle carrying 4 times the magnitude of the electron has a velocity $\vec{v} = 3\vec{\iota} 2\vec{j} + 2\vec{k} \, ms^{-1}$ in a region where the magnetic field is $\vec{B} = 4\vec{\iota} + 3\vec{\jmath} + \vec{k} \, T$.
 - (1) Find the magnitude of the magnetic force \vec{F} on this particle. [5]
 - (2) Verify that \vec{F} is a centripetal force. [3]
- (j) Define inductive reactance? [1]
- (k) A resistor of resistance 100 Ω is connected in series with an inductor of inductive reactance 150 Ω and a 5 V supply. Calculate the circuit current. [4]

SECTION B

- 2 (a) Vectors \vec{P} and \vec{Q} are given by: $\vec{P} = (1, -5, 2)$ and $\vec{Q} = (4, 0, -2)$ determine the unit vectors of \vec{P} and \vec{Q} leaving your answer in exact form. [4]
 - (b) A particle has an initial velocity of (2i 4j-3k) ms⁻¹ and an acceleration of (0.4i + 0.3j+ 2k) ms⁻². Calculate
 - (i) the speed of the particle after 2 seconds. [5]
 - (ii) the distance travelled in the 2 seconds. [3]
 - (c) Calculate the resultant and direction of the forces given in Fig. 1. [8]

[18]

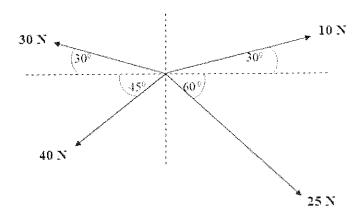


Fig. 1

Three point charges Q_1 , Q_2 and Q_3 respectively of magnitudes 1 μ C, 2 μ C and 3 μ C are fixed at the positions shown in Fig 2. The charges are in vacuum.

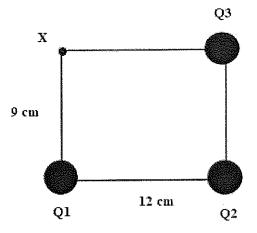


Fig. 2

- (a) Calculate the electric potential at point X due to the three charges.
- (b) How much work is required to move a charge of -5 μ C from infinity to point X? [2]
- 4 (a) Sate Kirchhoff's voltage and current laws and explain the fundamental physical principles upon which each of the laws is based. [4]
 - (b) Fig. 3 shows a network containing two voltage sources and five resistors.

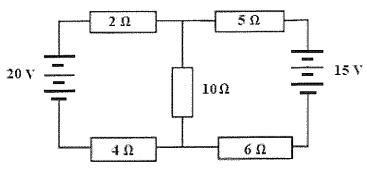


Fig. 3

- (i) Use Kirchhoff's rules to determine the current through the 10 Ω resistor. [14]
- (ii) Hence calculate the potential difference across the 10 Ω resistor. [2]
- 5 Fig. 4 shows a network of capacitors connected to a voltage source.

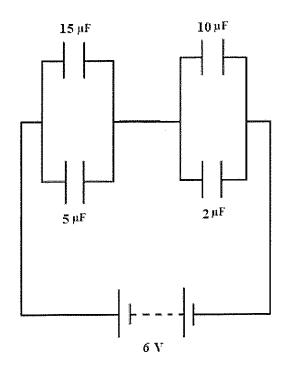


Fig. 4

Calculate

(a) the equivalent capacitance of the capacitors.
(b) the charge on each capacitor.
(c) the potential difference across each capacitor.
(d) the energy stored in each capacitor.

- A resistor of resistance 100 Ω and an inductor of inductive reactance 150 Ω are connected in series with a 60 V a.c. generator.
 - Draw a circuit diagram showing how the components are connected. [5] (a)
 - [4] Draw the phasor diagram for V_R and V_L . (b)
 - Calculate the following. (c)
 - impedance [3] [2] [2] [2] [2] (i) total current (ii)
 - potential drop across the resistor (iii)
 - potential drop across the inductor (iv)
 - the phase angle (v)