BINDURA UNIVERSITY OF SCIENCE EDUCATION

FACULTY OF SCIENCE EDUCATION

Diploma in Science Education

Part 1.1

DM008: Numerical Methods

Duration 3 hours

Semester Examinations

E NOV 2023

INSTRUCTIONS

Answer all questions in Section A and any two questions from Section B

Section A: (40 marks)

- A1. Variables x and y are connected by the relation a law of the form $y = kx^n$, where k and n are constant integers.
 - (i) Transform the relation $y = kx^n$ to linear form. [3] Approximate values of y corresponding to the given values of x are given in the following table.

X	1.34	3.58	7.6	12.1	14.8
 у	208.0	10.9	1.14	0.283	0.155

- (ii) Find, by plotting a suitable graph the values of k and n. [7]
- A2. (i) Use Simpson's rule to estimate the value of $\int_0^{0.8} \sqrt{(1+x^2)} dx$ using ordinates at intervals of 0.2. [8]
 - (ii) Suggest two reasons why numerical solutions are important. [2]

A3. Let
$$f(x) = xe^x - x - 1$$
.

(a) Show that the equation f(x) = 0 has root between 0 and 1.

[2]

- (b) Taking $x_o = 1$ as an initial approximation, determine the value of the root to 3 significant figures by:
 - (i) fixed point iteration,

[2]

(ii) Newton-Raphson method.

[4]

(iii) Compare the efficiency of the two methods in b (1) and (11).	[4]
A4. (a) The chord AB of a circle divdes the circle into two portions whose areas are in the ratio If AB makes an angle θ with the diameter passing through A , show that θ satisfy equation: $\sin 2\theta = \frac{\pi}{2} - 2\theta$.	
(b) Solve the equation $\sin 2\theta = \frac{\pi}{2} - 2\theta$ by graphical means.	[5]
Section B [60 marks]	
Answer two questions from this section being careful to number them B5 to B7.	
B5. (a) If x_1 is the first approximation of the root of the equation $f(x) = 0$ and x_2 is the second	1
approximation of the root:	
(i) State the underlying concept of the Newton-Raphson iterative method.	[2]
(ii) Hence, show that $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$.	[4]
(iii) Apply the Newton-Raphson method to find the root of the equation $x + \frac{4}{x^2} - 1$, with	th
$x_0 = -1$, giving your answer to 3 significant figures.	[7]
(b) (i) Show that if x is a fixed point of the iteratin then, $x_{n+1} = \sqrt{3x_n + 2}$, then x satisfies	the
equation: $x^2 - 3x - 2 = 0$.	
(iii) Perform 4 iterations of for $x_{n+1} = \sqrt{3x_n + 2}$, using $x_0 = 1$ to obtain x_4 .	[6]
(c). (i) Use linear interpolation to find the root of the equation $e^x = 3x + 1$ to 3 decimal	places.
	[5]
(ii) It is known that x and y are related by the law $ae^y = x^2 - bx$. Explain how you	would
reduce the relation to the form $Y = mX + c$.	[6]
B 6. (a) (i). Sketch the graph of the function $f(x) = 8 - 3x - 2x^2$	[4]
(ii) Show by differentiation that the gradient of the function.	[2]
(iii) Use the iteration $x_{n+1} = \sqrt[3]{4 - 1.5x_n}$ to find the root of the equation $8 - 3x - 2x$	$x^2 = 0$
correct to 3 significant figures.	[7]
(b) (i) Estimate to 4 decimal places, the definite integral $I = \int_0^1 \frac{1}{1+x^2} dx$ using Simpson's in	rule
with 5 ordinates.	[7]
,	e 2 of 3

- (ii) Use analytic methods to find $\int_0^1 \frac{1}{1+x^2} dx$ and hence determine the relative error in using Simpson's rule. [10]
- **B7.** (a) (i). If $I = \int_a^b f(x) dx$ then prove that $I = \frac{b-a}{n} [y_0 + y_n + 2(y_1 + y_2 + \dots + y_{n-1})]$, where n denotes the number of strips. [6]
 - (ii). Estimate the value of $\int_1^e lnx dx$ using the trapezium rule with 5 ordinates to 4 decimal places. [7]
 - (iii). Hence, determine the relative error in the trapezium rule. [3]
 - (b) The sequence given by the iterative formula: $x_{n+1} = 2(1 + e^{-x_n})$ with $x_0 = 0$, converges to the root, α . Find, an estimate for α to 3 decimal places and state the equation which α is a root.
 - (c) (i) Verify that the equation $x^3 7x + 3 = 0$ has a root between 2 and 3. [3]
 - (ii). Use the interval bisection method to determine an approximation of the root in (i) to 3 decmal places. [5]

END OF PAPER