MCH502-03

BINDURA UNIVERSITY OF SCIENCE EDUCATION FACULT OF SCIENCE EDUCATION DEPARTMENT OF CHEMISTRY

• ::

MAIN EXAMINATION PAPER

PROGRAMME:

MSc EDUCATION (CHEMISTRY)

COURSE:

INORGANIC CHEMISTRY 5

CODE:

MCH502

DURATION:

3 HOURS

INSTRUCTIONS TO CANDIDATES

- 1. Answer ALL questions.
- 2. Each question should start on a **fresh page** and marks will be allocated as indicated.
- 3. Each question carries 20 marks.

REQUIRED MATERIAL

Non-programmable calculator

MCH502-03

Question 1

(a) Applying the eighteen-electron rule, find the value of x and y.

(i) $Fe_x(CO)_6(\eta^3-C_3H_5)_6$

[3 marks]

(ii) $Cr(CO)_4(\eta^3-C_3H_5)_y$

[3 marks]

(b) Classify the following as closo, nido, or arachno.

(i) C₂B₃H₇

[1 mark]

(ii) NCB₁₀H₁₁

[1 mark]

(c) Determine the number of framework electron pairs predicted by the mno rule for the following.

(i) $(n^5-C^2B_9H_{11})_2Fe^{2-}$

[2 marks]

(ii) (η5-C5H5)C0B4H10

[2 marks]

(d) Explain the bonding in diborane.

[5 marks]

(e) Discuss the role of hemoglobin in transporting oxygen, carbon dioxide, and hydrogen ions in biological systems.

[3 marks]

Question 2

Describe the importance of transition elements in biological storage, transport and redox processes.

20 marks

Question 3

Discuss the modern challenges and discussions regarding the periodic table.

[20 marks]

Question 4.

Discuss the role of inorganic chemistry in the development of catalytic processes for industrial applications. Provide examples of specific catalysts and their applications.

[20 marks]

MCH502-03

Question 5

A reaction between the terpyridine ligand (L) and iron salt resulted in the formation of an organometallic FeL₂ complex. Outline how you can characterize the formed complex using different analytical techniques. [15 marks]

Figure 1

(b) Define the concept of the isolobal analogy and explain how it is applied in understanding the bonding and reactivity of organometallic fragments. [5 marks]