BINDURA UNIVERSITY OF SCIENCE EDUCATION FACULTY OF COMMERCE

DEPARTMENT OF ECONOMICS

BACHELOR OF SCIENCE HONOURS DEGREE IN ECONOMICS

MATHEMATICS FOR ECONOMISTS II EC109 (1)

DURATION: 3 HOURS TOTAL MARKS: 100

INSTRUCTIONS

- 1. This paper carries four questions
- 2. Answer ALL questions.
- 3. All questions carry 25 marks.
- 4. Cellphones are not allowed in the examination room.

QUESTION 1

- a. A consumer has a utility function $X^2 + Y^2$. The price of X is \$1 and Y is \$4. With an income of \$200, how much of the two goods can the consumer purchase to maximise her utility? [9 marks]
- b. What is the economic interpretation of the Lagrangean multiplier in (a) above?

[2 marks]

c. Maximize $U(x; z) = x^2 + 3x + 3z^2 - 6z$ subject to 2x + 2z = 32

[7 Marks]

d. Find the extreme values of $f(x; y) = 4x^2 + xy - 3x^2$

[7 Marks]

QUESTION 2

- a. If the marginal cost of a firm is $\mathcal{C}'(Q) = 2e^{0.4Q}$ and the fixed cost is CF=130. Find the total cost function $\mathcal{C}'(Q)$. [5 Marks]
- b. Solve the following integral equations:

i. $\int 7dx$	[3 Marks]
ii. $\int 12x^{-3}dx$	[3 Marks]
iii. $\int x \sin x dx$	[5 Marks]
iv. $\int (6x^3 + 4x^2 - 11)(18x^2 + 4x)dx$	[5 Marks]
\forall . $\int x \ln x dx$	[4 Marks]

QUESTION 3

Solve the following differential equations:

a.
$$\frac{dy}{dt} + 12y = 10$$
; y(0) = 0 [3 marks]

b.
$$\frac{dy}{dt} - 4y = 0$$
; y(0) = 8 [3 marks]

c.
$$\frac{dy}{dt} + 5y = 15$$
 [4 marks]

d.
$$\frac{dy}{dt} + 2ty = t$$
; $y(0) = \frac{3}{2}$ [6 marks]

e.
$$y'' - 6y' + 3y = 10$$
; $y(0) = 5$ and $y'(0) = 6$ [9 marks]

QUESTION 4

Solve the following difference equations:

i.
$$y_{t+1} - 4y_t = 6$$
 when $y_0 = 3$ [4 Marks]

ii.
$$y_{t+2} + 5y_{t+1} - 2y_t = 8$$
 when $y_0 = 4$ and $y_1 = 7$ [7 Marks]

iii.
$$y_{t+2} - 5y_{t+1} + 3y_t = 9$$
 when $y_0 = 5$ and $y_1 = 9$ [7 Marks]

iv.
$$y_{t+2} + y_{t+1} - 3y_t = 4$$
 when $y_0 = 1$ and $y_1 = 4$ [7 Marks]