BINDURA UNIVERSITY OF SCIENCE EDUCATION

FACULTY OF SCIENCE AND ENGINEERING

AEH 308

Department Of Engineering and Physics Bachelor of Science (Honours) in Agricultural Engineering Food Engineering

3 HOURS (100 MARKS)

INSTRUCTIONS

[6 marks]

Answer any <i>FOUR</i> questions. Each question carries 25 marks.	
Question 1	
a. Briefly explain three objectives of most heat transfer operations in food processing.	[6 marks]
 b. A wet food product contains 70% water. After drying, it is found that 80% of original water has been removed. Determine: mass of water removed per kilogram of wet food, and composition of dried food. 	[2 marks] [3 marks]
c. The volumetric flow rate of beer flowing in a pipe is 1.8 L/s. If the inside diameter of the pipe is 3 cm and the density of beer is 1000 kg/m³, calculate:	
i. the average velocity of beer,ii. the mass flow rate of beer, and	[2 marks] [2 marks]
iii. the velocity for the same volumetric flow rate if another pipe with a diameter of 1.5 cm is used.d. Explain four functional properties of ingredients used in meat	[2 marks]
processing.	[8 marks]
Question 2 a. Determine the convective heat transfer coefficient of a metal plate whe the rate of heat transfer per unit area is 1000 W/m². It is given that the	
surface temperature of plate is 120°C, and ambient temperature is 20°C b. With the aid of practical examples, describe two categories of the food	[6 marks]
drying process.c. Explain the functions of the following major components of a microwave oven:	
i. Power supply,ii. Power tube,iii. Wave guide,iv. Stirrer, and	[2 marks] [3 marks] [3 marks] [3 marks]
v. Oven cavity. Question 3 Describe these ways in which formentation causes changes in food	[5 marks]
a. Describe three ways in which fermentation causes changes in food	

Q

- quality.
- b. An ultra-high pressure process is being used to reduce the population of spoilage microorganisms in a food product. The process occurs as follows:

Time (min)	Pressure (MPa)
0	0
1	100
2	200
3	300
4	400
5	400
6	400
7	400
8	200
9	100
10	0

Estimate the reduction in microbial population that occurs as a result of this process, when the initial population is $2x10^3$. It is given that the response of the spoilage microorganism to the pressure treatment is described by $D_{200} = 60$ min and $z_p = 130$ MPa. [8 marks]

c. In wine processing, grape juice is preserved at room temperature by treatment with SO_2 . It is desired to strip some of the SO_2 from the sulphured juice. The stripping of the juice will be carried out with a counter-current flow of air in a tray column. The air has a temperature of 25°C and contains water vapour at equilibrium with liquid juice at this temperature. The juice flow rate is $0.56m^3s^{-1}$. The SO_2 concentration in juice (mole fraction) is to be reduced from 10^{-3} to 10^{-6} . The initial and final concentrations of SO_2 in air are y_i =0 and y_o =0.75x10⁻³ (mole fraction). If the partitioning coefficient is 1 (mole fraction c_e/c_r basis), calculate:

i. the air flow rate,
ii. separation factor (S) and
iii. the number of equilibrium stages.

[4 marks]
[2 marks]
[5 marks]

Question 4

a. Describe three factors that affect chilling rates of a food product. [6 marks]

b. Briefly explain the four factors that affect the rate of extraction separation process. [8 marks]

c. Calculate the freezing time of a pizza 3 cm thick being frozen in a cold stream at -20°C, and using Plank equation. The frozen pizza has a freezing point of -1.0°C, density ρ=1000kg/m³, and thermal conductivity of 1W/(mK). The heat transfer coefficient in the cold air is 20 W/(m²K). The flat surface of the pizza is much higher than the thickness (an infinite plate).

[11 marks]

Question 5

- a. Heated air at 50°C and 10% relative humidity is used to dry rice in a bin dryer. If the air exits the bin under saturated conditions, determine the amount of water removed per kg of dry air.
 [5 marks]
- b. In efforts to conserve energy, a food dryer is being modified to reuse part of the exhaust air along with ambient air. The exhaust airflow of 10 m³/s at 70°C and 30% relative humidity is mixed with 20 m³/s of ambient air

at 30°C and 60% relative humidity. Using the psychrometric chart, determine:

i. the dry bulb temperature, and

[4 marks]

ii. humidity ratio of the mixed air.

[4 marks]

c. With the aid of diagrams, explain the principle of operation of two types of machines that are commonly used as huskers.

[12 marks]

Question 6

a. The solid particles in a liquid-solid suspension are to be separated by centrifugal force. The particles are 100 microns in diameter with a density of 800 kg/m³. The liquid is water with a density of 993 kg/m³, viscocity of 5.95×10⁻⁴ kg/ms and the effective radius for separation is 7.5 cm. If the required velocity for separation is 0.03 m/s, determine the required rotation speed for the centrifuge.

[5 marks]

b. The concentration of whey is being accomplished by using an ultrafiltration membrane to separate water. The 10 kg/min feed stream has 6% total solids and is being increased to 20% total solids. The membrane tube has a 5 cm inside diameter, and the pressure difference applied is 2000 kPa. If permeability constant is 4x10⁻⁵ kg H₂0/(m² kPa s), calculate:

i. the flux of water through the membrane, and

[5 marks]

ii. the length of the membrane tube.

[5 marks]

c. With the aid of diagrams, describe the operation of a mechanical compression refrigeration system.

[10 marks]

End of paper