BINDURA UNIVERSITY OF SCIENCE EDUCATION DIPLOMA IN SCIENCE EDUCATION

ENGINEERING AND PHYSICS DEPARTMENT

DP002 (2): ELECTRICITY AND MAGNETISM

TIME: 3 HOURS

INSTRUCTIONS

Answer question one in Section A and any three questions from Section B. Section A carries 40 marks and each question in Section B carries 20 marks.

Physical constants

Electronic charge, $e = 1.6 \times 10^{-19} \text{ C}$ Boltzmann's constant, $k = 1.38 \times 10^{-23} \text{ JK}^{-1}$ Mass of an electron, $m_e = 9.11 \times 10^{-31} \text{kg}$ Permittivity of free space, $\epsilon_o = 8.85 \times 10^{-12} \text{ C}^2 \text{N}^{-1} \text{m}^{-2}$ Velocity of light in vacuum, $c = 3.00 \times 10^8 \text{ ms}^{-1}$ Acceleration due to gravity, $g = 9.81 \text{ ms}^{-2}$

SECTION A.

1 (a)

(i). Explain in terms of electron movement what happens when a polythene rod becomes charged negatively by being rubbed with a cloth. [3]

(ii). One method of painting a car uses electrostatics. A paint spray produces paint droplets all of which are given a positive charge. The car body is given a negative charge.

1. Explain why it is important to give all the paint droplets a positive charge.[2]

2. Explain why it is important to give a car body a negative charge.[2]

- (b). Calculate the current in each of the following,
 - (i).2C flows through a bulb in 10s [3]
 - (ii).2 µc flows through a light -emitting diode in 1ms. [3]
- (c). What length of constantan wire of diameter 0.4mm has a resistance of 10 Ω ? Assume the resistivity of constantan is $5 \times 10^{-7} \Omega$ m. [6]
- (d). A 3 μF capacitor is connected in series with a 6 μF capacitor. The combination is then connected in parallel with a 1 μF capacitor to a 12V battery.

(i). Draw a circuit diagram to represent this information. [2]

Figure 1

(b) A 10 μF capacitor is connected across the terminals of a 100 V d.c. power supply and allowed to charge fully. Calculate

(i)	the charge on the capacitor,	[2]
(ii)	the energy stored by the capacitor.	[2]

(c). A straight wire of length 50 cm and resistance 10 Ω moves sideways with velocity 15ms⁻¹ at right angles to a uniform magnetic field of flux density 2.0 x 10⁻³ Tesla. Calculate the amount of current that would flow if its ends were connected by leads of negligible resistance.

(d). Draw a sketch graph to show the variation of the electric field intensity with distance x.[4]

(b) Three charges A, B and C of magnitudes 5 nC, 3 nC and 2 nC respectively are arranged at the corners of a square in vacuum as shown in **Figure 2**.

Figure 2

Calculate

- (i) the electric potential at X due to the three charges. [6]
- (ii) the electric field strength and its direction at X due to the three charges. [10]
- 5. Figure 3.1 shows the magnetic field between the two pole pieces of a large *U*-shaped magnet, with the north pole vertically above the south pole. When the strength of the magnetic field is measured along the line *AB* using a search coil, it is found to vary as shown in Figure 3.2.

Figure 3.1

Figure 3.2

distance

Figure 3.3

- (a) Describe in words how the magnetic flux linkage in the coil changes as the coil moves from A to B. [6]
- (b) State Faraday's and Lenz's law of electromagnetic induction. Why is Lenz's law, a law of conservation of energy? [4]
- (c) .Redraw, Figure 3.3 and on it plot a graph to show how the e.m.f. induced in the coil varies as the coil moves from A to B.
- 6.(a) Define the following and state their units
 - (i) magnetic flux.

[3]

(ii) magnetic flux density.

[3]

- (b). A long vertical straight wire carries current in an upward direction. Draw a diagram to show the direction of the magnetic field around the wire. [2]
- (c). An aeroplane with a wing span of 25 m is flying from East to West at a speed of 250 ms

- (i). Calculate the potential difference between the wing tips if the vertical component of the earth's magnetic field is 4.0×10^{-5} T. [4]
 - (ii). Which wing tip is at a positive potential? [1]
- (c). Deduce the relation between the *electric field strength* E at the surface of a conductor, the *charge density* σ and the *permittivity* ϵ .

END OF PAPER