BINDURA UNIVERSITY OF SCIENCE EDUCATION SCIENCE AND MATHEMATICS EDUCATION DEPARTMENT DIPLOMA IN SCIENCE EDUCATION

COURSE: DC003/DCH006 ORGANIC CHEMISTRY 2 HOURS

ANSWER QUESTION 1 AND $\underline{\text{TWO}}$ QUESTIONS FROM SECTION A AND $\underline{\text{TWO}}$ OTHER QUESTIONS FROM SECTION B. EACH QUESTION CARRIES 20 MARKS

1.	(a)	Define the following terms; (i) Functional group. (ii) Homologous series. (iii) Isomers.	[2 marks] [2 marks] [2 marks]
	(b) (i)	Draw skeletal structures for the following compounds: C(CH ₃) ₃ CHClCOOH (ii) CH ₃ CHICO ₂ CH ₂ CHBr ₂ (iii) CH ₂ =CH-CH=CH-CH ₃	[2 marks] [2 marks] [2 marks]
	(c)	Name the following compounds: (i) CH ₂ ClCH ₂ Cl (ii) HCOOH (iii) CH ₃ CHO (iv)	[4 marks]
(d)		Identify the functional groups in the following compound CH ₂ Br	[4 marks]
			[4 marks]

SECTION A: ANSWER ANY TWO QUESTIONS

TIME

1-Bromobutane will undergo the following reactions: 2.

- For reaction I (a)
 - Name the type of organic reaction. (i)

[1 mark]

Give the reagents and conditions employed. (ii)

[1 mark]

- Explain any difference in the reaction rate if 1-lodobutane was used (iii) in place of 1-bromobutane. [2 marks]
- Show the mechanism for reaction I.

[5 marks]

- Reaction I was repeated with 2-bromo-2 methylpropane. (b)
 - Draw a displayed structure of the organic product formed. (i)

[2 marks]

Name the product. (ii)

[1 mark]

- Show the reaction mechanism for (ii)
 - 2-bromo-2-methylpropane.

[5 marks]

- For reaction II; (c)
 - Name the type of organic reaction. (i)

[1 mark]

State reaction conditions for the reaction. (ii)

[2 marks]

Alcohols D and E are isomers, 3 (a)

CH₃CH(OH)CH₂CH₃

(CH₃)₃COH

Classify the alcohols into 1°, 2° or 3° alcohol. (i)

[2 marks]

- Draw the structural formula of 2 other alcohols which are (ii)
- (iii) isomers of D and E.

[2 marks]

What reagent will be used to dehydrate D and E to alkenes. (iv)

[1 mark] Draw the structural formulae of the three isomers that are (V)

[6 marks] obtained by dehydrating D.

Describe a reaction that can be used to distinguish between D and (vi) [2 marks]

What observations would be made in each case? [3 marks] (vii)

Draw the displayed structure of the compound formed when D (b)

reacts with ethanoyl chloride, CH3COCl.

[2 marks]

Draw diagrams to show how D gives rise to optical isomerism. (C)

[2 marks]

Cis-pent-2-ene and trans-pent-2-ene are alkenes. 4.

> For each, give: (a)

(b)

[2 marks] its molecular formula. (i) [2 marks] its structural formula. (ii)

its displayed formula. (iii)

[4 marks] [4 marks]

its skeletal formula. (iv)

Ethene reacts with bromine to give 1,2 dibromoethane. Name the reaction type.

[1 mark]

(i) Write a balanced equation for the reaction. (ii)

[2 marks]

Show the reaction mechanism as fully as you can using curly arrows. (iii)

[5 marks]

SECTION B: ANSWER ANY TWO QUESTIONS.

Cinnamaldehyde, F, is used in fragrances for its jasmine-like odour. F contains 5. two functional groups other than the benzene ring. These functional groups behave independently of each other. The structure of cinnamaldehyde is shown below:

Name the functional groups present in the molecule. (a)

[2 marks]

- The presence of unsaturation in this molecule can be shown by (b) reaction with bromine dissolved in hexane.
 - What is the observable result of this test? (i)

[2 marks]

Give the equation of the reaction taking place. (ii)

[3 marks]

Give the structure of the organic product formed if bromine water (iii) [3 marks] is used.

How would you test for the presence of the C=0 group in this (C) [2 marks] molecule.

Give the structure of the molecule produced when the -CHO (d) Group in cinnamaldehyde:

reacts with HCN (i)

[2 marks]

is oxidized (ii)

[2 marks]

(iii) is reduced

[2 marks]

- (e) Give the structure of the compound formed if the product in (d)(i) is reacted with H_2SO_4 . [2 marks]
- 6. Some chemical transformations of methylbenzene are given below

Compound A

(a) (i) Name the reaction mechanisms labelled I and III.

[2 marks]

(ii) State the reaction conditions for reactions I and III.

[5 marks]

(iii) Give an outline of the mechanism for reaction II.

[8 marks]

(b) There are two positional isomers for compound A.

(i) Draw their structural formulae.

[4 marks]

(ii) Suggest which of the two is more likely to be formed alongside compound A.

[1 mark]

7.(a) Name the following compounds.

[3 marks]

- (b) Show how each of the three compounds would react with the following reagents and in each case give the equation of the reaction:
 - (i) Na

[6 marks]

(ii) NaOH

[5 marks]

(c) Esters of carboxylic acids are often used as synthetic fruit flavours. Ethylbutanoate, H, is a major component of strawberry and

pineapple flavourings.

$CH_3CH_2CH_2CO_2CH_2CH_3$

1

(i) What reagents and conditions do you need to synthesize H from butanoic acid? [3 marks]

(ii) Give the name and displayed formula of a compound that can be used in place of butanoic acid? [3 marks]

END OF EXAM