BINDURA UNIVERSITY OF SCIENCE EDICATION FACULTY OF SCIENCE EDUCATION DEPARTMENT OF ENGINEERINGAND PHYSICS

Bachelor of Science Honours Degree in Electronic Engineering

EEE3205 - Control Engineering

Time Allowed: 3 Hours

Total Marks: 100

Special Requirements: Scientific Calculator, rule, pen, pencil

INSTRUCTIONS

1. Answer any FIVE (5) questions

E MAR 2024

2. The question paper contains SEVEN (7) questions

3. Each question carries 20 marks

- 1(a) With the aid of a block diagram describe elements that make up an automatic control system.
 [8]
- (b) Describe five advantages of closed loop control system over open loop control system.
- (c) State five (5) characteristics/requirements of an ideal control system. [5]
- (d) Discuss the effect of positive feedback on stability of control systems. [2]
- 2(a) With the aid of block diagram explain the operation of an automatic electric iron. [5]
- (b) Find the root locus of the unity feedback system having $G(s) = \frac{K}{s+1}$ shown below. [6]

- (c) Find Laplace transform of $x(t) = Sin \omega t$ [5]
- (d) Find the Laplace Transform of the following differential equation. [4]

$$\frac{d^2x_0}{dt^2} + 3\frac{dx_0}{dt} + 2x_0 = 0$$
 Initial conditions $x_0 = 4$, $\frac{dx_0}{dt} = 3$

3(a) The graph below shows Time Response specifications in symbol form. Define any four specifications shown.[8]

- (b) With the aid of waveform diagrams, discuss the following time responses to step input
 - (i) Overdamped response(ii) Underdamped response

[3] [3]

- (c) With the aid of s-plane, determine whether the following systems are stable, marginally stable or unstable.
 - (i) -2, -5 (ii) -2,2, -j,j

[2]

(iii) $x(t) = \cos \omega t$.

[2]

4(a) Use the graph below the answer the following questions

(i) State the type of input

[1]

(ii) State type of system

[2]

(iii) Show that, $K_V = \infty$ and $e_{ss} = 0$ for ramp input type 2 and higher-order systems. (b) For the closed loop control system shown below, show that

[3] [4+3]

$$|M(j\omega)| = \left| \frac{G(j\omega)}{1 + G(j\omega)H(j\omega)} \right| \text{ and } \angle M(j\omega) = \angle G(j\omega) - \angle [G(j\omega)H(j\omega)]$$

(c) The characteristic equation of a system is given here. Identify the poles of the system.

[3]

- $10s^2 + 4s + 15 = 0$
- (d)Prove the following rule for eliminating feedback.

[4]

5(a) Explore five (5) advantages of frequency response analysis over time response analysis of control systems. [10]

(b) With the aid of mathematical equations or diagrams where possible, define the following control systems.

(i)Linear and Non-linear control system	[2]
(ii)Open and closed loop control system	[2]
the state of the s	

6 Using Mason's gain formula determine $\frac{C(s)}{R(s)}$ [20]

- 7(a) Explain the need for compensation in closed loop control systems. [2]
- (b) Explain the following systems with aid of block diagram.
 - (i) Series compensated system [4]
 - (ii) Feedback compensated systems [4]
- (c) Examine the stability of $s^4 + 6s^3 + 21s^2 + +36s + 20 = 0$ using Routh's criteria. [8]
- (d) For the given signal flow, identify the number of forward paths and individual loops. [2]

The End